Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040020-5    https://doi.org/10.11896/cldb.22040020
  金属与金属基复合材料 |
金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能
周后明*, 周金虎, 刘刚, 陈皓月
湘潭大学机械工程学院,湖南 湘潭 411105
Preparation and Cutting Performance of Si3N4 Ceramic Tool Toughened by Intermetallic Compound MoSi2 and SiC Whisker
ZHOU Houming*, ZHOU Jinhu, LIU Gang, CHEN Haoyue
School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 19848KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高Si3N4陶瓷刀具的强度和韧性,克服单一增韧方式以及金属粘结剂增韧的局限性,本工作利用金属间化合物协同晶须对其增韧补强,将MoSi2颗粒和SiC晶须添加到Si3N4陶瓷基体中,制备出Si3N4/MoSi2/SiCw(SMC)复合陶瓷刀具材料。结果表明:SiC晶须的加入可以有效提高Si3N4陶瓷的断裂韧性,MoSi2的加入可以显著提升Si3N4陶瓷的抗弯强度。连续干切削45#淬火钢时,相较于商用刀具YBC251,SMC复合陶瓷刀具的寿命及切削稳定性提升显著。其中,添加了SiC晶须的SMC3(MoSi2 10%(未作特别说明时均为质量分数),SiCw 10%)及SMC2(MoSi2 0%,SiCw 10%)刀具的寿命均比未添加SiCw的SMC1(MoSi2 10%,SiCw 0%)更长。随着切削深度的增加,未添加MoSi2的SMC2易出现崩刃现象,切削稳定性不如协同增韧的SMC3。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周后明
周金虎
刘刚
陈皓月
关键词:  陶瓷刀具  协同增韧  切削  力学性能  微观结构    
Abstract: In order to further improve the strength and toughness of Si3N4 ceramic tool, overcome the limitations of single toughening method and metal binder toughening, MoSi2 particles and SiC whiskers were added to the Si3N4 ceramic matrix to prepare Si3N4/MoSi2/SiCw (SMC) compo-site ceramic tool material by toughening and reinforcing them with intermetallic compounds and whiskers. The results show that the addition of SiC whisker can effectively improve the fracture toughness of Si3N4 ceramics, and the addition of MoSi2 can significantly improve the bending strength of Si3N4 ceramics. In continuous dry cutting of 45# quenched steel, the tool life and cutting reliability of SMC composite ceramic tool are significantly improved compared with commercial tool YBC251. Among them, the tool life of SMC3 (MoSi2 10wt%, SiCw 10wt%) and SMC2 (MoSi2 0wt%, SiCw 10wt%) with SiC whisker is better than that of SMC1 (MoSi2 10wt%, SiCw 0wt%) without SiCw. With the increase of cutting depth, SMC2 without MoSi2 is prone to chipping, and the cutting reliability is not as good as SMC3 with synergistic toughening.
Key words:  ceramic tool    synergistic toughening    cutting    mechanical property    microstructure
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG75  
基金资助: 湖南省教育厅项目(21A0117);湖南省自然科学基金(2020JJ4585);国家自然科学基金(51775470; 51775469)
通讯作者:  *周后明,湘潭大学机械工程学院教授、博士研究生导师。2008年于广东工业大学获工学博士学位。主要从事高速加工技术及其工具、刀具与刀具材料方面的研究。发表论文50余篇,包括《中国机械工程》、Ceramics International等。zhouhouming@xtu.edu.cn   
引用本文:    
周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
ZHOU Houming, ZHOU Jinhu, LIU Gang, CHEN Haoyue. Preparation and Cutting Performance of Si3N4 Ceramic Tool Toughened by Intermetallic Compound MoSi2 and SiC Whisker. Materials Reports, 2024, 38(2): 22040020-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040020  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22040020
1 Liang T. Equipment Machinery, 2019(3), 38(in Chinese).
梁天. 装备机械, 2019(3), 38.
2 Zou B, Huang C Z, Liu H L, et al. Machining Science and Technology, 2010, 934(886), 324.
3 Jin Z H, Luo W J. Materials Science & Engineering, 2006, 435(6), 71.
4 Kim W, Oh H S, Shon I J. International Journal of Refractory Metals and Hard Materials, 2015, 48, 376.
5 Tian X H, Zhao J, Zhu N B, et al. Materials Science & Engineering, 2014, 596, 255.
6 Tian L, Hou Q L, Wang Y X, et al. Materials Express, 2020, 10(6), 928.
7 Li S B, Wen G W, Zhang B S. Materials Science & Engineering, 2002, 332(1-2), 37.
8 Deng J X, Liu L L, Liu J H. International Journal of Machine Tools & Manufacture, 2005, 45(12), 1393.
9 Naik N K, Kumar S, Ratnaveer D, et al. International Journal of Da-mage Mechanics, 2013, 22(2), 145.
10 Li C W, Li J. Mining and Metallurgical Engineering, 2011, 31(5), 91.
11 Zhang M N, Wang X, Alexander D, et al. Advanced Engineering Mate-rials, 2020, 22(3), 1900953.
12 Guo X L, Zhu Z L. Advances in Applied Ceramics, 2018, 117(1-2), 16.
13 Xu W W, Yuan J T, Yin Z B, et al. Ceramics International, 2018, 44(16), 19872.
14 Kwon H J, Suh C Y, Kim W. Ceramics International, 2015, 41(3), 4223.
15 Liu B Q, Wei W Q, Gan Y Q, et al. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105372.
16 Yang Z R, Li X X, Zhang X J, et al. Powder Metallurgy, 2016, 59(2), 112.
17 Sciti D, Celotti G C, Pezzott G, et al. Journal of Composite Materials, 2007, 41(21), 2585.
18 Shang G D, Wang B L. International Journal of Applied Ceramic Techno-logy, 2020, 17(2), 501.
19 Ahmadian M, Wexler D, Calka A, et al. Materials Science Forum, 2007, 539(1), 962.
[1] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[2] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[3] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[4] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[5] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[6] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[7] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[8] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[9] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[10] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[13] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[14] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[15] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed