Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060186-5    https://doi.org/10.11896/cldb.23060186
  高分子与聚合物基复合材料 |
基于微流控系统的磁流变胶微观结构演化与磁敏行为分析
甘如饴, 浮洁*, 綦松, 余淼
重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆 400044
Microstructural Evolution and Magneto Sensitive Behavior of Magnetorheological Gel Based on Microfluidic System
GAN Ruyi, FU Jie*, QI Song, YU Miao
Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
下载:  全 文 ( PDF ) ( 5213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为磁敏智能材料的重要一员,磁流变胶的大阻尼和抗沉降特性使其在大幅振动衰减和缓冲领域具有广阔的应用前景。然而,传统宏观测试方法难以说明微观结构与宏观力学性能之间的机理联系,因此,通过直观表征微观结构的演化,揭示材料在多场下的力磁耦合机制具有重要意义。故本工作采用微流控测试系统对磁流变胶的微观结构的演化与磁敏行为进行了研究,并预测了多场耦合下材料在管道结构中的宏观力学特性。同时,通过对不同流速以及磁感应强度下的磁流变胶微观结构的定性观察和定量分析,阐述了多场耦合下磁流变胶微观结构的演化与磁敏行为的统计规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘如饴
浮洁
綦松
余淼
关键词:  磁流变胶  微流控测试系统  微观结构  磁敏行为    
Abstract: As an important member of magnetic-controlled intelligent materials, magnetorheological gel (MRG) have an important application prospect and potential in the field of large vibration reduction and mitigation due to its excellent damping and small settling characteristics. However, traditional macroscopic methods are difficult to explain the mechanism between microstructures and macroscopic mechanical properties. Hence, it is of great significance to visually characterize the evolution of microstructures and reveal the magneto-mechanical coupling mechanism of materials under multiple fields. Therefore, in this work, the microfluidic measurement system is used to study the microstructures evolution and magneto-sensitive behavior of MRG, and predict the macroscopic mechanical properties of the material in the tube under multi-field coupling. Meanwhile, through qualitative observation and quantitative analysis of MRG microstructures at different velocities and magnetic flux densities, the statistical laws of MRG microstructure evolution and magneto-sensitive behavior under multi-field coupling are elaborated.
Key words:  magnetorheological gel    microfluidic measurement system    microstructure    magneto-sensitive behavior
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TB381  
基金资助: 国家自然科学基金(51875056;12372146)
通讯作者:  *浮洁,重庆大学光电工程学院教授、博士研究生导师。2009年于东北大学控制理论与控制工程专业博士毕业后到重庆大学工作至今。主要研究方向为磁流变智能结构与减振缓冲控制及其在运载装备和精密加工/测量等领域的应用。主持军委科技委国防创新特区项目、国家自然科学基金青年、面上基金项目等10余项。在Smart Material and Structures、Journal of Sound and Vibration等国内外期刊上发表学术论文80余篇,其中SCI收录40余篇,出版学术专著1部。fujie@cqu.edu.cn   
作者简介:  甘如饴,2017年于重庆邮电大学获得工学硕士学位。现为重庆大学光电工程学院博士研究生,在余淼教授的指导下进行研究。目前主要研究领域为磁流变材料的力磁特性及电磁吸波性能等。
引用本文:    
甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
GAN Ruyi, FU Jie, QI Song, YU Miao. Microstructural Evolution and Magneto Sensitive Behavior of Magnetorheological Gel Based on Microfluidic System. Materials Reports, 2024, 38(21): 23060186-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060186  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060186
1 Li S Q, Li Y C, Li J C. Composites Science and Technology, 2021, 214, 108996.
2 Yang P A, Yu M, Fu J. Journal of Nanoparticle Research, 2016, 18(3), 61 2016.
3 Zhang G, Wang H X, Wang J. Journal of Vibration and Shock, 2019, 38(20), 172(in Chinese).
张广, 汪辉兴, 王炅.振动与冲击, 2019, 38(20), 172.
4 Hu Z D, Zhao H J, Wang D W. Materials Reports, 2019, 33(S2), 630(in Chinese).
胡志德, 赵湖钧, 王大伟.材料导报, 2019, 33(S2), 630.
5 Mohamad N, Mazlan S A, Choi S B, et al. Smart Materials and Structures, 2016, 25(9), 095043.
6 Haider A, Shahbaz H. JAMA Surgery, 2021, 156(8), 738.
7 Woo D, Choi S B, Choi Y T, et al. Journal of Intelligent Material Systems and Structures, 2007, 18(12), 1211.
8 Lv J C, Zhang J P, Wu M Y, et al. Advanced Energy Materials, 2022, 24(9), 2101602.
9 Dohmen E, Borin D. Smart Materials and Structures, 2021, 31(2), 025016.
10 Cheng H, Lim T, Kim S, et al. Materials Research Letters, 2022, 10(5), 310.
11 Li X L, Zheng L L. Optical Instruments, 2022, 44(2), 79(in Chinese),
李小龙, 郑璐璐. 光学仪器, 2022, 44(2), 79.
12 Mashaghi S, Abbaspourrad A, Weitz D A, et al. Trac-Trends in Analytical Chemistry, 2016, 82, 118.
13 Khater A, Abdelrehim O, Mohammadi M, et al. Trac-Trends in Analytical Chemistry, 2021, 138, 116234.
14 White A M, ZhangY T, Shamul J G, et al. Small, 2021, 17(23), 2100491.
15 Filippi M, Buchner T, Yasa O, et al. Advanced Materials, 2022, 34(23), 2108427.
16 Yi C J, Peng X H, Zhao C W. Rheologica Acta, 2010, 49(8), 815.
17 Abdi H, Soheilian R, Erb R M, et al. Physical Review E, 2018, 97(3), 032601.
18 Guo C W, Chen F, Meng Q R, et al. Journal of Magnetism and Magnetic Materials, 2014, 360, 174.
19 Xu F H, Xu Z D, Zhang X C,et al. Journal of Vibration and Acoustics, 2016, 138(1), 011017.
20 Pei P, Peng Y B. Materials Reports, 2021, 35(12), 12001(in Chinese).
裴培, 彭勇波.材料导报. 2021, 35(12), 12001.
21 Yu H J, Wang S Y, Wu W W, et al. Signal Process, 2021, 180, 107871.
22 Li H T, Peng X H. Journal of Chongqing University, 2010, 33(5), 100(in Chinese),
李海涛, 彭向和.重庆大学学报, 2010, 33(5), 100,
23 Pang H M, Pei L, Sun C L. Journal of Rheology, 2018, 62(6), 1409.
24 Martin J E, Venturini E, Odinek J. Physical Review E, 2000, 61(3), 2818.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[9] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[10] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[11] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[12] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[13] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[14] 朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
[15] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed