Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23090192-7    https://doi.org/10.11896/cldb.23090192
  无机非金属及其复合材料 |
同级配下高碳铬铁渣骨料对混凝土性能的影响研究
黄鹏宇1, 周永祥2, 冷发光2,*, 贺阳2, 孔亚宁1, 杨文1, 高育欣1
1 中建西部建设建材科学研究院有限公司,成都 610213
2 中国建筑科学研究院有限公司,北京 100013
Research on the Influence of High-carbon Ferrochromium Slag Aggregate on the Properties of Concrete Under the Same Gradation
HUANG Pengyu1, ZHOU Yongxiang2, LENG Faguang2,*, HE Yang2, KONG Yaning1, YANG Wen1, GAO Yuxin1
1 China West Construction Academy of Building Materials, Chengdu 610213, China
2 China Academy of Building Research, Beijing 100013, China
下载:  全 文 ( PDF ) ( 3538KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高碳铬铁渣属于大宗固废,是一种大量堆积、亟需处理的工业冶炼废渣。将铬铁渣用作骨料制备绿色混凝土是一种很好的消纳方式。为了解铬铁渣自身材料特性对混凝土性能的影响,本工作调整铬铁渣骨料级配和天然砂石一致,研究铬铁渣骨料对混凝土拌合物流动性能、力学性能、抗氯离子渗透性能和微观结构的影响,并基于不同的养护方式分析了铬铁渣的界面活性。结果表明:铬铁渣表面粗糙多开口孔,在相同骨料级配下,铬铁渣取代天然骨料后,对混凝土拌合物流动性能有不利影响,但提高了混凝土的抗压强度、劈裂抗拉强度、抗氯离子渗透性能,并对混凝土界面过渡区微结构有一定的改善作用。此外,铬铁渣表面存在少量低活性物质,在压蒸情况下或者水化后期会参与反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄鹏宇
周永祥
冷发光
贺阳
孔亚宁
杨文
高育欣
关键词:  高碳铬铁渣  骨料级配  混凝土性能  微观结构    
Abstract: High carbon ferrochromium slag is a kind of industrial smelting waste slag which is accumulated in large quantities and needs to be disposed of urgently. Using ferrochromium slag as aggregate to prepare green concrete is a promising approach to its consumption. In order to explore the influence of the material properties of ferrochromium slag on the performance of concrete, this study adjusts the aggregate gradation of ferrochromium slag to be consistent with natural sand and gravel, and studies the influence of ferrochromium slag aggregate on the flow performance, mechanical properties, chloride ion permeability resistance and microstructure of concrete. Meanwhile, based on different curing methods, the interfacial activity of ferrochromium slag was analyzed. The results show that the surface of ferrochromium slag is rough and has many open pores, under the same aggregate gradation, the replacement of natural aggregate by ferrochromium slag has an adverse effect on the flow properties of concrete mixtures, but it improves the compressive strength, the splitting tensile strength and the resistance to chloride ion permeability of concrete, and also have a certain improvement on the interface transition zone of concrete. In addition, ferrochromium slag has a certain improvement effect on the microstructure of the interface transition zone of concrete, and there are a small amount of low active substances on the surface of ferrochromium slag, which will participate in the reaction in the case of autoclave or later hydration.
Key words:  high-carbon ferrochromium slag    aggregate grading    performance of concrete    microstructure
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52234004);长江水利委员会长江科学研究院开放研究基金资助项目(CKMV2021878/KY);中建股份科技研发课题(CSCEC-2022-Z-21)
通讯作者:  *冷发光,研究员,博士研究生导师,国务院政府特殊津贴专家。目前任中国建研院专业副总工程师,兼任中国建筑科学研究院、湖南大学、长安大学、北京工业大学博士研究生导师。2002年于清华大学获得工学博士学位。长期致力于高性能混凝土、混凝土耐久性、混凝土质量控制、建材测试技术、混凝土标准化、固体废弃物再生利用等方面研究。获得省部级以上科技奖10余项,在国内外公开发表学术论文和著作140余篇,主编国家和行业标准30余部。227101649@qq.com   
作者简介:  黄鹏宇,2022年6月于重庆大学获得材料学硕士学位。现为中建西部建设建材科学研究院研发人员。目前主要研究领域为建筑材料。
引用本文:    
黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
HUANG Pengyu, ZHOU Yongxiang, LENG Faguang, HE Yang, KONG Yaning, YANG Wen, GAO Yuxin. Research on the Influence of High-carbon Ferrochromium Slag Aggregate on the Properties of Concrete Under the Same Gradation. Materials Reports, 2024, 38(22): 23090192-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090192  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23090192
1 Miao X W, Bai Z T, Lu G H, et al. Chinese Journal of Engineering Science, 2020, 42(6), 663(in Chinese).
苗希望, 白智韬, 卢光华, 等. 工程科学学报, 2020, 42(6), 663
2 Liu B Y, Yang Y F, Yue B, et al. Environmental Engineering, 2016, 34(S1), 679(in Chinese).
刘柏杨, 杨玉飞, 岳波, 等. 环境工程, 2016, 34(S1), 679.
3 Wang F H, Liu L X. Concrete and Cement Products, 2017(8), 24(in Chinese).
汪发红, 刘连新. 混凝土与水泥制品, 2017(8), 24.
4 Zhou Y X, He Y, Liu C, et al. New Building Materials, 2021, 48(1), 6(in Chinese).
周永祥, 贺阳, 刘晨, 等. 新型建筑材料, 2021, 48(1), 6.
5 Lakshmi P P P, Anu V V V. International Research Journal of Engineering and Technology, 2018, 5, 1500.
6 Yang F, Sun X M. Steel Vanadium and Titanium, 2021, 42(3), 119(in Chinese).
杨飞, 孙晓敏. 钢铁钒钛, 2021, 42(3), 119.
7 Susheel S M, Sathwik S R, Vinayak T, et al. International Research Journal of Engineering and Technology, 2016, 3(6), 250.
8 Al-Jabri K, Shoukry H, Khalil I, et al. Journal of Materials in Civil Engineering, 2018, 30, 04018152.
9 Yaragal S C, Chethan Kumar B, Jitin C. Sustainable Materials and Technologies, 2020, 23, 137.
10 Dash M K, Patro S K. Construction and Building Materials, 2018, 177, 457.
11 Panda C R, Mishra K K, Panda K C, et al. Construction and Building Materials, 2013, 49, 262.
12 Zhang X, Zhang G H, Wang J W, et al. In: Proceedings of the Symposium on Highway Scientific Maintenance and Equipment Technology. Shenyang, 2017, pp.5(in Chinese).
张潇, 张冠华, 王佳伟, 等. 公路科学养护及装备技术研讨会. 沈阳, 2017, pp.5.
13 Acharya P K, Patro S K. Waste Management & Research: The Journal for a Sustainable Circular Economy, 2016, 34(8), 764.
14 Zhang S, Liu L, Tan K, et al. Construction and Building Materials, 2015, 93, 1180.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[9] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[10] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[11] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[12] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[13] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[14] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[15] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed