Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18049-18055    https://doi.org/10.11896/cldb.19100069
  机非金属及其复合材料 |
集料和纤维掺量对LTCC力学性能和微观结构的影响
陈文华, 黄志义
浙江大学建筑工程学院,杭州 310058
Effect of Aggregates and Fiber Contents on Mechanical Properties and Microstructure of Light Weight Toughness Cement-based Composites (LTCC)
CHEN Wenhua, HUANG Zhiyi
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 9584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了优化轻质韧性水泥基复合材料(Lightweight toughness cement-based composites, LTCC),分别采用空心微珠和漂珠作为集料,添加亲水性聚乙烯醇(HPVA)纤维和聚丙烯(PP)纤维,共制备12组试件,探究集料和纤维掺量对LTCC的抗压和抗折强度、韧性、延性和毛细吸水特性的影响规律,并利用扫描电镜观察LTCC破坏后集料的微观形貌以及纤维的破坏形态。结果表明:当空心微珠掺量为20% 和HPVA纤维体积掺量为1.5%时,LTCC的表观密度为1 612 kg/m3,抗压强度和抗折强度分别为60.06 MPa、20.55 MPa,且极限拉应变达到2.05%。空心微珠和漂珠能填充微小孔隙,从而细化LTCC内部孔隙,降低其毛细吸水能力。空心微珠具有更高的火山灰活性,促进水化反应生成高硅钙比的水化产物,改善集料与水泥基体间的界面过渡区,从而提高LTCC的弯曲韧性和拉伸延性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文华
黄志义
关键词:  轻质  空心微珠  漂珠  弯曲韧性  微观结构  火山灰活性    
Abstract: In order to optimize lightweight toughness cement-based composites (LTCC), cenospheres and floating beads were used as aggregates, and hydrophilic polyvinyl alcohol (HPVA) fibers and polypropylene (PP) fibers were added. 12 groups of specimens were prepared to investigate the influence of aggregate and fiber contents on the compressive and flexural strength, bending toughness, tensile ductility and capillary water absorption of LTCC. Scanning electron microscopy was used to observe the microscopic morphology of the aggregates and the failure mode of the fiber after LTCC destruction. The results show that the apparent density of LTCC is 1 612 kg/m3 when the contents of cenospheres are 20% and the volume of HPVA fibers is 1.5%. The compressive strength and flexural strength of LTCC are 60.06 MPa and 20.55 MPa, respectively, and the ultimate tensile strain reaches 2.05%. Cenospheres and floating beads can fill tiny pores and refine the internal pores of LTCC, and thus reduce its capillary water absorption capacity. Cenospheres have higher pozzolanic activity and promote hydration reaction to produce hydration products with high Si/Ca ratio, which can improve the interfacial transition zone between aggregate and cement matrix, thereby improving the bending toughness and tensile ductility of LTCC.
Key words:  lightweight    cenosphere    floating beads    bending toughness    microstructure    pozzolanic activity
                    发布日期:  2020-09-12
ZTFLH:  TU528  
基金资助: 浙江省重点研发计划(2018C03029);浙江省建设科研项目(2018K021)
通讯作者:  hzy@zju.edu.cn   
作者简介:  陈文华,浙江大学建筑工程学院,博士研究生。主要从事高性能混凝土、道路工程新材料等方面的研究。
黄志义,浙江大学建筑工程学院,教授,博士研究生导师。主要研究领域: 现代道路建设与维护新材料与新技术; 交通安全与节能环保新技术; 隧道健康监测与防火安全; 智慧交通新技术。近年来主持或参与国家自然科学基金、省部级及地方合作等交通领域科研项目多项,发表论文70余篇,获省部级科学技术奖3项。
引用本文:    
陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
CHEN Wenhua, HUANG Zhiyi. Effect of Aggregates and Fiber Contents on Mechanical Properties and Microstructure of Light Weight Toughness Cement-based Composites (LTCC). Materials Reports, 2020, 34(18): 18049-18055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100069  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18049
1 Iman A, Payam S, Zahiruddin F. Journal of Building Engineering, 2018, 20, 81.
2 Ahmed W, Khushnood R, Memon S, at al. Journal of Cleaner Production, 2018, 184, 1016.
3 Aslam M, Shafigh P, Jumaat M, et al. Journal of Cleaner Production, 2016, 119, 108.
4 ACI Committee. Guide for structural lightweight-aggregate concrete,Far-mington Hills, American Concrete Institute, 2014.
5 Fan Jinzhong. Bulletin of the Chinese Ceramic Society, 2005(5), 73(in Chinese).
范锦忠. 硅酸盐通报, 2005(5), 73.
6 Ali M, Maslehuddin M, Shameem M, et al. Construction and Building Materials, 2018, 164, 739.
7 Montgomery D, Diamond S. Cement & Concrete Research, 1984, 14, 767.
8 Blanco F, García P, Mateos P, et al. Cement & Concrete Research, 2000, 30, 1715.
9 Huang X, Ranade R, Zhang Q, et al. Construction and Building Mate-rials, 2013, 48, 954.
10 Du H. Construction and Building Materials, 2019, 199, 696.
11 Liu X, Chia K, Zhang M. Cement & Concrete Composites, 2010, 32, 757.
12 Zhang Zuxue, Zou Yun, Zhao Taogan, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2228(in Chinese).
张祖雪,邹昀,赵桃干,等. 硅酸盐通报, 2019, 38(7), 2228.
13 Zhu Han, Yang Jiantao, Yu Yong. Bulletin of the Chinese Ceramic Society, 2015, 34(12), 3617(in Chinese).
朱涵,杨建涛,于泳.硅酸盐通报, 2015, 34(12), 3617.
14 Tong Yu, Zhang Junnan, Tian Xin, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(4), 1066(in Chinese).
佟钰,张君男,田鑫,等. 硅酸盐通报, 2015, 34(4), 1066.
15 JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks, Japan Society of Civil Engineers, Tokyo, 2008.
16 ASTM 1585-04. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM International, West Conshohocken, 2011.
17 Zhang Wei, Yin Chenglong, Huang Zhiyi. Materials Review, 2018, 32(S2), 498(in Chinese).
张伟,殷成龙,黄志义.材料导报, 2018, 32(专辑32), 498.
18 Zhang Wei, Yin Chenglong, Huang Zhiyi. Journal of Building Materials, 2019, 22(2), 227(in Chinese).
张伟,殷成龙,黄志义.建筑材料学报, 2019, 22(2), 227.
19 Luo S, Liu M, Yang L, et al. Construction and Building Materials, 2019, 195, 305.
20 Hu Shuguang, Wang Fazhou, Ding Qingjun. Journal of the Chinese Ceramic Society, 2005(6), 713(in Chinese).
胡曙光,王发洲,丁庆军. 硅酸盐学报, 2005(6), 713.
21 Lu M, Xiao H, Liu M, et al. Cement and Concrete Composites, 2018, 91, 21.
[1] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[2] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[3] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[4] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[5] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[6] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[7] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[10] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[11] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[12] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[13] 杨海鹏, 石玗, 林巧力, 慈文娟, 张刚. 铜表面微结构化对惰性润湿和反应润湿的影响[J]. 材料导报, 2020, 34(16): 16109-16113.
[14] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[15] 覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed