Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16109-16113    https://doi.org/10.11896/cldb.19070252
  金属与金属基复合材料 |
铜表面微结构化对惰性润湿和反应润湿的影响
杨海鹏, 石玗, 林巧力, 慈文娟, 张刚
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Cu Surface Microcosmic Morphology on the Inert Wetting and Reactive Wetting
YANG Haipeng, SHI Yu, LIN Qiaoli, CI Wenjuan, ZHANG Gang
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Gansu Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 3928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用纳秒激光在铜基板表面构建不同线间距的网格以得到不同的表面粗糙度。以乙二醇/铜惰性润湿体系和锡/铜高温反应润湿体系为研究对象,采用改良座滴法研究了纳秒激光铜表面微结构化对惰性润湿和反应润湿的影响。结果表明,在不同类型的网格未出现液滴的不对称,惰性润湿符合Wenzel模型而反应润湿结果则偏离此模型,即在可润湿的体系中,粗糙度增加可促进惰性润湿铺展,但会恶化反应润湿铺展。高温下反应润湿偏离此模型可归因于毛细管结构的消失和粗糙表面的微凸结构阻止了三相线的移动,故粗糙度的增加未能促进润湿。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海鹏
石玗
林巧力
慈文娟
张刚
关键词:  纳秒激光  铜基板表面  纹理构造  微观结构  惰性润湿  反应润湿    
Abstract: Nanosecond laser was used to construct meshes with different line spacing on the surface of copper substrate to create different surface roughness. The influence of nanosecond laser microstructure on inert wetting and reactive wetting of copper was studied by using modified sessile drop method. The results showed that the different types of meshes did not cause asymmetric droplet, and the inert wetting was consistent with Wenzel model, while the reactive wetting results deviated from the model. In the inert wettable system, as predicted by Wenzel model, the increased roughness would promote the final wettability. The deviation of reactive wetting can be attributed to the fact that the asperities of the rough surface prevents the triple line from moving, and thus the increase of the roughness does not promote the wettability.
Key words:  nanosecond laser    Cu surface    texturing    microstructure    inert wetting    reactive wetting
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG174.143  
基金资助: 国家自然科学基金(51675256);甘肃省基础研究创新群体计划项目(17JR5RA107); 兰州理工大学红柳优秀青年人才扶持计划项目;甘肃省引导科技创新发展专项资金项目(2019zx-08)
通讯作者:  shiyu@lut.cn   
作者简介:  杨海鹏,兰州理工大学硕士研究生,研究方向为异种金属连接及润湿性。
石玗,兰州理工大学教授(博士),博士研究生导师。主要从事先进焊接方法、焊接物理及焊接过程控制等领域的研究工作,发表学术论文100余篇,其中SCI、EI、ISTP收录50余篇,主持国家自然科学基金、省部级基金项目多项。2012年入选兰州理工大学红柳杰出人才。获甘肃省科技进步三等奖,甘肃省高校科技进步二等奖等多项奖励。现为The Scientific World Journal杂志编委,多种国内外杂志审稿人。兼任机械工程学会焊接学会机器人与自动化委员会委员,甘肃省焊接学会秘书长,国家自然科学基金项目评议专家。
引用本文:    
杨海鹏, 石玗, 林巧力, 慈文娟, 张刚. 铜表面微结构化对惰性润湿和反应润湿的影响[J]. 材料导报, 2020, 34(16): 16109-16113.
YANG Haipeng, SHI Yu, LIN Qiaoli, CI Wenjuan, ZHANG Gang. Effect of Cu Surface Microcosmic Morphology on the Inert Wetting and Reactive Wetting. Materials Reports, 2020, 34(16): 16109-16113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070252  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16109
1 Deng J. Brazing, Mechanical Industry Press, China, 1979(in Chinese).
邓键. 钎焊, 机械工业出版社,1979.
2 Kumar G, Prabhu K N. Advances in Colloid and Interface Science, 2007, 133(2),61.
3 Wenzel Robert N. Transactions of the Faraday Society, 1936, 28(8), 988.
4 Shuttleworth R, Bailey G L J.Discussions of the Faraday Society, 1948(3),16.
5 Esmaeilirad A, Rukosuyev Maxym V, Jun Martin B G, et al. Surface & Coatings Technology, 2016, 285,227.
6 Gnedenkov S V, Sinebryukhov S L, Egorkin V S, et al. Surface & Coa-tings Technology, 2016, 307,1241.
7 Yuan Z, Chen H, Tang J, et al. Journal of Physics D Applied Physics, 2007, 40(11),3485.
8 Cheng J, Cao J L, Zhao C, et al. Applied Laser, 2019, 39(1),102(in Chinese).
成健,曹佳丽,赵城,等. 应用激光,2019, 39(1),102.
9 Wu M, Chang L L, He X B, et al.Rare Metal Materials and Enginee-ring, 2017(5),267(in Chinese).
吴茂,常玲玲,何新波,等.稀有金属材料与工程,2017, 46(5),267.
10 Wu M, Chang L L, Lu X, et al. Transactions of Materials and Heat Treatment, 2016,37(7),25(in Chinese).
吴茂,常玲玲,路新,等. 材料热处理学报,2016, 37(7),25.
11 Satyanarayan Prabhu K N. Journal of Electronic Materials, 2013, 42(8),2696.
12 Chen Y Y, Duh J G, Chiou B S. Journal of Materials Science: Materials in Electronics, 2000, 11(4),279.
13 Eric Wulf, Hendrik Bachmann, et al. International Journal of Materials Research, 2014, 105(3),240.
14 Voytovych R, Robaut F, Eustathopoulos N.Acta Materialia, 2006,54(8),2205.
15 Song Y, Wang C, Dong X, et al. Optics & Laser Technology, 2018, 102,25.
16 Chen H, Peng J, Fu L, et al. Applied Surface Science, 2016, 368,208.
17 Eustathopoulos N. Acta Materialia, 1998, 46(7),2319.
18 Rye R R, Jr J A M, Yost F G.Langmuir, 1996, 12(2),555.
19 Rideal E K. Journal of the Franklin Institute, 1922, 195(3),431.
20 Dettre R H, Jr R E J. Progress in Surface & Membrane Science, 1964, 6,125.
21 Cunha A, Serro A P, Oliveira V, et al. Applied Surface Science, 2013, 265(Complete),688.
[1] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[2] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[3] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[4] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[5] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[6] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[7] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[8] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[9] 覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
[10] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[11] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[12] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[13] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[14] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[15] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed