Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16114-16118    https://doi.org/10.11896/cldb.19070198
  金属与金属基复合材料 |
聚焦超声辅助电火花制备多尺度镍粉时超声功率对镍粉粒径的影响
侯启龙1, 刘一凡2, 林发明1,3, 李翔龙1
1 四川大学机械工程学院,成都 610065;
2 电子科技大学材料与能源学院,成都 611731;
3 西南交通大学机械工程学院,成都 610031
Effect of Ultrasonic Power on the Particle Size of Multiscale Nickel Powders Produced by the Focused Ultrasound-assisted Electrical Discharge Machining
HOU Qilong1, LIU Yifan2, LIN Faming1,3, LI Xianglong1
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
2 School of Materials and Energy,University of Electronic Science and Technology, Chengdu 611731, China;
3 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 3862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电火花-超声复合加工技术是一种绿色环保、易于控制的制备微纳米金属粉末的方法。为了研究聚焦超声功率对微纳米金属粉末形貌和粒径分布的影响,本工作通过COMSOL Multiphasic仿真软件模拟超声在工作箱中的声压分布,确定放电位置,并根据仿真结果,采用实验室自制设备以镍棒为电极在纯水中进行实验。实验结束后观察微米尺度与纳米尺度镍粉的形貌,并分析微纳米镍粉的粒径分布。结果表明:聚焦超声的空化和振动效应能有效地破碎固液相中的金属蒸气团簇和金属液滴,便于制备出小尺寸的镍颗粒,并使其均匀地分布在溶液中;声空化产生的冲击波使镍颗粒发生碰撞,大尺寸的镍颗粒在撞击点处产生的高温使镍粉发生烧结,形成金属烧结颈,多个球形颗粒团聚成不规则的大颗粒;小尺寸的镍颗粒由于粒径小,发生碰撞后产生的能量不足以使其团聚。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯启龙
刘一凡
林发明
李翔龙
关键词:  电火花-超声复合加工  聚焦超声功率  烧结现象  粒径分布    
Abstract: The ultrasonic-assisted electrical discharge is a green, easy and controllable approach to generate micro-nano metallic powders. To investigate the effect of focused ultrasonic power on the morphology and particle size distribution of micro-nano metallic powders, the COMSOL Multiphasic simulation software was applied to simulate the sound pressure distribution of ultrasonic in the working box to determine the discharge position. Then, according to the simulation results, a lab-made equipment was used to carry out the experiments in pure water with nickel bar as electrode. After the experiments, the morphology of micron-scale and nano-scale nickel powders were observed, and the size distributions were analyzed. The results reveal that the cavitation and vibration effects of focused ultrasound can effectively break the metal vapor clusters and droplets in the solid-liquid phase, which helps to decrease the size and obtain the Ni particles colloids with very small size. The shock wave generated by acoustic cavitation makes the nickel particles collide, which results in a high temperature to form a sintering neck between two nickel powders. In addition, spherical particles agglomerate into irregular particles with large size. However, due to the small size effect, the energy generated by the collision is not enough to make the agglomeration phenomenon between small size particles.
Key words:  ultrasound-assisted electrical discharge machining    focused ultrasound power    sintering phenomenon    particle size distribution
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51275324;51435011);科技部创新方法工作专项:四川省创新方法推广应用示范(20171M010700)
通讯作者:  lxlnc@163.com   
作者简介:  侯启龙,四川大学机械工程学院硕士研究生,研究方向为电火花超声特种加工和微纳米粉体制备。
李翔龙,四川大学机械工程学院副教授,硕士研究生导师。1993年在哈尔滨工程大学获得机械制造工艺及设备专业工学学士学位,1996—2003年在四川大学获得机械制造及自动化专业工学硕士学位和工学博士学位。其主要研究方向包括特种加工、计算机数控技术及工业设备自动化、产品创新设计。
引用本文:    
侯启龙, 刘一凡, 林发明, 李翔龙. 聚焦超声辅助电火花制备多尺度镍粉时超声功率对镍粉粒径的影响[J]. 材料导报, 2020, 34(16): 16114-16118.
HOU Qilong, LIU Yifan, LIN Faming, LI Xianglong. Effect of Ultrasonic Power on the Particle Size of Multiscale Nickel Powders Produced by the Focused Ultrasound-assisted Electrical Discharge Machining. Materials Reports, 2020, 34(16): 16114-16118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070198  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16114
1 Hou Y, Kondoh H, Ohta T, et al. Applied Surface Science, 2005, 241, 218.
2 Park J, Rishch M, Nam G, et al. Energy and Environmental Science, 2017, 10, 129.
3 Gawande M B, Goswami A, Felpin F, et al. Chemical Reviews, 2016, 116, 3722.
4 Lu A, Salabas E L, Schüth F. Angewandte Chemie International Edition, 2007, 46, 1222.
5 Zhan J, Yue J F, Zhang C F. Journal of Materials Engineering, 2011(7), 10(in Chinese).
湛菁, 岳建峰, 张传福.材料工程, 2011(7),10.
6 Zhao P X, Feng X W, Huang D, et al. Coordination Chemistry Reviews, 2015, 287, 114.
7 Nguyen P K, Jin S, Berkowitz A E. Journal of Applied Physics, 2014, 115, 17A756.
8 Tabrizi N S, Ullmann M, Vons V A, et al. Journal of Nanoparticle Research, 2008, 11, 315.
9 Tseng K H, Chung M Y, Chang C Y. Nanomaterials, 2017, 7, 133.
10 Dvornik M I. International Journal of Refractory Metals and Hard Mate-rials, 2010, 28, 523.
11 Shabgard M R, Najafabadi A F. Advanced Powder Technology, 2015, 25, 937.
12 Sahu R K, Hiremath S S, Manivannan P V, et al. Materials and Manufacturing Processes, 2014,29,477.
13 Liu N, Li X L, Liu Y F, et al. Modern Manufacturing Engineering, 2013(11), 16(in Chinese).
刘南, 李翔龙, 刘一凡, 等.现代制造工程, 2013(11), 16.
14 Zhao Z K, Li X L, Liu Y F, et al. Materials Review B:Research Papers, 2017, 31(7), 72(in Chinese).
赵占奎, 李翔龙, 刘一凡, 等.材料导报:研究篇, 2017, 31(7), 72.
15 Liu Y F, Li X L, Bai F S, et al. Particuology, 2014, 17, 36.
16 Wang Y T, Li X L, Liu Y F, et al. Journal of Mechanical Engineering, 2014, 51(11), 1(in Chinese).
汪衍涛, 李翔龙, 刘一凡, 等.机械工程学报, 2015, 51(11), 1.
17 Doktycz S J, Suslick K S. Science, 1990, 247, 1067.
18 Pratsinis S E. Journal of Colloid and Interface Science, 1988, 124, 416.
19 Liu Y F, Zhu K L, Li X L, et al. Advanced Powder Technology, 2018, 29, 863.
20 Liu Y F, Li X L, Li Y, et al. Applied Physics A:Materials Science and Processing, 2016, 122, 174.
21 Enomoto N, Maruyama S, Nakagawa Z. Materlals Research, 1997, 12, 1410.
[1] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed