Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040046-8    https://doi.org/10.11896/cldb.23040046
  无机非金属及其复合材料 |
基于残余砂浆附着特征的再生混凝土硫酸盐传输模型
关博文1,2, 张硕文1,2, 吴佳育1,2,3,*, 王发平4, 陈晓堃5
1 长安大学材料科学与工程学院,西安 710061
2 长安大学交通铺面材料教育部工程研究中心,西安 710061
3 宁波工程学院建筑与交通工程学院,浙江 宁波 315016
4 青海省交通控股集团有限公司,西宁 810000
5 青海省交控建设工程集团有限公司,西宁 810000
Sulfate Ion Transfer Model of Recycled Concrete Based on the Characterization of Attached Mortar
GUAN Bowen1,2, ZHANG Shuowen1,2, WU Jiayu1,2,3,*, WANG Faping4, CHEN Xiaokun5
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
2 Engineering Research Center of Transportation Pavement Materials, Ministry of Education, Chang'an University, Xi'an 710061, China
3 School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang, China
4 Qinghai Communications Holding Group Co., Ltd., Xining 810000, China
5 Qinghai Provincial Traffic Control Construction Engineering Group Co., Ltd., Xining 810000, China
下载:  全 文 ( PDF ) ( 7677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 已有再生混凝土计算模型未充分考虑残余砂浆附着特征,导致模型中缺少新砂浆-原生骨料界面过渡区,道路工程混凝土硫酸盐传输模型与实际情况不符。本工作根据瓦拉文公式将三维骨料体积转换为二维平面圆形,并根据图像分析法测得的残余砂浆附着特征将不同粒径的骨料分割成残余砂浆和裸露骨料两部分,随后利用蒙特卡罗方程将分割后的再生骨料于混凝土体系中随机投放,构建了再生混凝土的六相数字化模型。通过再生骨料截面面积确定、再生骨料数据库建立等过程,提出六相混凝土数字化模型中再生骨料残余砂浆附着特征的表达方法。基于Fick第二定律,结合孔隙率对再生混凝土中各相扩散系数的影响分析,提出再生混凝土中各相扩散系数方程。通过有限元软件实现了六相再生混凝土的二维可视化,建立了六相再生混凝土硫酸根离子传输模型。通过将试验测试值与模型计算值进行对比,得出试验结果与计算结果总体吻合度良好,理论计算结果与实验所测离子传输深度的变化规律是一致的,建立的基于残余砂浆附着特征的再生混凝土硫酸盐传输模型具有一定的合理性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关博文
张硕文
吴佳育
王发平
陈晓堃
关键词:  道路工程  再生混凝土  残余砂浆  覆盖率  硫酸根离子  模型    
Abstract: The existing model of recycled concrete did not fully consider the characteristics of attached mortar, resulting in the lack of the new mortar-aggregate interface transition zone in the model, and the sulfate transfer model was inconsistent with the actual situation. In this work, the volume of the three-dimensional aggregate was converted into a two-dimensional plane circle according to the Valerian formula, and the aggregates are divided into two parts, the attached mortar and the aggregate according to the characteristics of the attached mortar measured by the image analysis method. Using Monte Carlo equations, the divided recycled aggregates were randomly put into the concrete system, and a six-phase digital model of recycled concrete was established. Through the process of determining the cross-sectional area of recycled aggregate and establishing the recycled aggregate database, a method for expressing the adhesion characteristics of the attached mortar of recycled aggregate in the six-phase concrete digital model was proposed. Based on Fick’s second law, combined with the analysis of the influence of porosity on the diffusion coefficient of each phase in recycled concrete, the diffusion coefficient equation of each phase in recycled concrete was proposed. The two-dimensional visualization of six-phase recycled concrete was realized by finite element software, and the sulfate ion transport model of six-phase recycled concrete was established. Comparing the experimental test value with the model calculation value, it is concluded that the test result is in good agreement with the calculation result. The theoretical calculation result is consistent with the change of the ion transmission depth measured in the experiment. The sulfate transport model of recycled concrete based on the adhesion characteristics of attached mortar is reasonable.
Key words:  highway engineering    recycled concrete    attached mortar    coverage rate    sulfate ion    model
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  U414  
基金资助: 青海省自然科学基金(2021-ZJ-765)
通讯作者:  * 吴佳育,博士,宁波工程学院建筑与交通工程学院讲师、硕士研究生导师,从事绿色建筑材料、道路材料相关研究工作。参与国家“973”项目、国家重大科研仪器研制项目、国家自然科学基金项目等10余项。发表学术论文 20 余篇,其中SCI 收录10余篇,ESI高被引论文1篇。授权发明专利13项。参编专著3部、技术标准3部。jy.wu@nbut.edu.cn   
作者简介:  关博文,博士,长安大学材料科学与工程学院副教授、硕士研究生导师,从事水泥混凝土耐久性研究,先后主持国家自然科学基金青年项目、中国博士后科学基金面上项目、青海省科技厅项目、青海省交通厅项目,参与国家重点研发计划与国家科技支撑计划、国家自然科学基金和青海省科技厅等国家及省部级项目10余项,发表学术论文40余篇,其中SCI、EI收录30余篇,作为第一完成人获发明专利4项。
引用本文:    
关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
GUAN Bowen, ZHANG Shuowen, WU Jiayu, WANG Faping, CHEN Xiaokun. Sulfate Ion Transfer Model of Recycled Concrete Based on the Characterization of Attached Mortar. Materials Reports, 2024, 38(15): 23040046-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040046  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040046
1 Wang S, Lyu L H, Zhang B L, et al. Research of Environment Sciences, 2021, 34(9), 1 (in Chinese).
王深, 吕连宏, 张保留, 等. 环境科学研究, 2021, 34(9), 1.
2 Zhao G W, Guo M Z, Cui J F, et al. Construction and Building Materials, 2021, 294(3), 123560.
3 Zou D J, Qin S S, Liu T J, et al. Cement and Concrete Research, 2021, 139, 106284.
4 Zhen H D, Poon C S. Materials & Design, 2014, 58, 19
5 Hu Z, Mao L X, Liu Q F. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2425 (in Chinese).
胡志, 毛丽璇, 刘清风. 硅酸盐通报, 2020, 39(8), 2425.
6 Liu Q F, Easterbrook D, Yang J, et al. Engineering Structures, 2015, 86, 122.
7 Shen X H, Liu Q F, Hu Z, et al. Ocean Engineering, 2019, 189, 106350.
8 Mao L X, Hu Z, Xia J, et al. Composite Structures, 2019, 207, 176.
9 Caré S, Hervé E. Transport in Porous Media, 2004, 56(2), 135.
10 Qiao H X, Qiao G B, Lu C G. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(3), 119 (in Chinese).
乔宏霞, 乔国斌, 路承功. 华中科技大学学报(自然科学版), 2021, 49(3), 119.
11 Guan B W, Yang T, Wu J Y, et al. Journal of Building Materials, 2018, 21(2), 304 (in Chinese).
关博文, 杨涛, 吴佳育, 等. 建筑材料学报, 2018, 21(2), 304.
12 Guan B W. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses. Ph. D. Thesis, Chang'an University, China, 2012 (in Chinese).
关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制. 博士学位论文, 长安大学, 2012.
13 Guan B W, Liu J N, Wu J Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3169 (in Chinese).
关博文, 刘佳楠, 吴佳育, 等. 硅酸盐通报, 2020, 39(10), 3169.
14 Yang T, Guan B W, Liu G Q, et al. Advances in Concrete Construction, 2019, 8(1), 55.
15 Yu D M, Guan B W, He R, et al. Construction and Building Materials, 2016, 115, 478.
16 Zhang Q Q, Xu F, Liu W Q, et al. Concrete, 2017(1), 39 (in Chinese).
张清清, 徐锋, 刘伟庆, 等. 混凝土, 2017(1), 39.
17 Li Y. Modeling and analysis of concrete with irregular aggregate. Master’s Thesis, Hefei University of Technology, China, 2017 (in Chinese).
李阳. 含非规则骨料的混凝土细观建模与分析. 硕士学位论文, 合肥工业大学, 2017.
18 Liao K X, Zhang Y P, Zhang W P, et al. Construction and Building Materials, 2020, 260, 119902.
19 Min H G, Sui L L, Xing F, et al. Construction and Building Materials, 2019, 216, 365.
20 Niu L C. Numerical simulation study on diffusion reaction law of sulfate ion in concrete under coupling a ction of load and sulfate attack. Master’s Thesis, Nanjing University of Technology, China, 2012 (in Chinese).
牛立聪. 荷载与硫酸盐侵蚀耦合作用下硫酸根离子在混凝土中扩散反应规律的数值模拟研究. 硕士学位论文, 南京理工大学, 2012.
21 Aitcin P C. Canadian Journal of Civil Engineering, 1986, 13(4), 499.
22 Jiang J Y, Sun G W, Wang C H. Construction and Building Materials, 2013, 39, 134.
23 Cao Y B. Study on multi-interface concrete microstructure of recycled concrete. Master’s Thesis, Qingdao University of Technology, China, 2016 (in Chinese).
曹瑜斌. 再生混凝土多重界面显微结构研究. 硕士学位论文, 青岛理工大学, 2016.
24 Xiao J Y, Li W G, Sun Z H, et al. Cement and Concrete Composites, 2013, 37, 276.
25 Yu Y, Lin L. Construction and Building Materials, 2020, 264, 120620.
26 German Institute for Standardisation. Determination of specific surface area of solids by gas adsorption using the method of brunauer, emmett and teller (DIN 66131), 2013.
27 Guan B W, Wu J Y, Chen H X, et al. China Journal of Highway and Transport, 2021, 34(10), 155 (in Chinese).
关博文, 吴佳育, 陈华鑫, 等. 中国公路学报, 2021, 34(10), 155.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[6] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[7] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[8] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[9] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[10] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[11] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[12] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[13] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[14] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[15] 王璞, 朱争取, 董延楠, 杨东, 庞靖, 张家泉. Finemet型非晶合金的复杂晶化动力学行为[J]. 材料导报, 2024, 38(3): 22100118-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed