Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22100252-7    https://doi.org/10.11896/cldb.22100252
  无机非金属及其复合材料 |
He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用
马昕1, 刘海韬1,*, 姜如2,3, 孙逊1
1 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 湖南科技大学物理与电子科学学院,湖南 湘潭 411201
3 湖南科技大学智能传感器与先进传感器材料湖南省重点实验室,湖南 湘潭 411201
Application of the He-Hutchinson Model in the Study of Continuous Ceramic Fiber Toughened Ceramic Matrix Composites
MA Xin1, LIU Haitao1,*, JIANG Ru2,3, SUN Xun1
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
3 Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
下载:  全 文 ( PDF ) ( 9822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于裂纹扩展的能量释放率准则,He-Hutchinson(H-H)模型可以预判连续陶瓷纤维增韧陶瓷基复合材料(CMCs)的基体裂纹在界面处的传播路径,对CMCs的增韧设计有着重要的指导价值,但目前尚未见H-H模型在CMCs研究领域的系统性综述文献。本文首先介绍了H-H模型的力学基础以及应用于CMCs中的必要简化过程,得出基于材料组元断裂能和弹性失配系数的裂纹偏转判据。基于目前形成的材料微观力学参数测量方法,结合CMCs脆性、微观结构复杂的特点,系统总结归纳了适用于CMCs的原位弹性模量、材料断裂能以及界面脱粘能的测量方法及优缺点。基于原位微观力学参数,重点综述与讨论了H-H模型在多孔基体CMCs和含界面相CMCs中的应用进展,最后指出了H-H模型目前存在的主要问题,并对其后续发展提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马昕
刘海韬
姜如
孙逊
关键词:  H-H模型  陶瓷基复合材料  微观力学  裂纹偏转    
Abstract: The famous He-Hutchinson (H-H) model can predict the propagation of matrix cracks at the interface, which based on the energy release rate criterion of crack propagation, and it has an essential role in toughening design in continuous ceramic fiber reinforced ceramic matrix compo-sites (CMCs). However, there is no literature review on H-H model in the field of CMCs. In this paper, the mechanical basis and simplification content of H-H model in CMCs research are firstly introduced, and the crack deflection criterion is obtained based on fracture energy and elastic mismatch coefficient of material components. Moreover, the measurement methods and characteristics of micro-mechanical parameters (including in-situ elastic modulus, material fracture energy and interface debonding energy) are systematically summarized, which based on the current measurement methods of material micro-mechanical parameters and the CMCs characteristics of brittle and complex microstructure. Also, the application progress of H-H model in porous matrix CMCs and interface phase CMCs is demonstrated, which based on in-situ micromechanical parameters. Finally, the existing problems of H-H model are pointed out and some suggestions for its further development are put forward.
Key words:  H-H model    ceramic matrix composites    micromechanics    crack deflection
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB332  
基金资助: 湖南省杰出青年基金项目(2020JJ2032);国家科技重大专项经费资助(J2019-V1-0014-0129)
通讯作者:  *刘海韬,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室研究员、硕士研究生导师。2010年于国防科技大学材料科学与工程专业博士毕业,随后在国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室工作至今。目前主要从事陶瓷基复合材料制备、分析表征和工程应用等方面的研究工作。发表论文50余篇,包括Carbon、Corrosion Science、Composite Part B、Journal of the European Ceramic Society、Journal of the American Ceramic Society、Material & Design、Composite Structure等。htslht@163.com   
作者简介:  马昕,2021年于广西大学获得工学学士学位,现为国防科技大学空天科学学院硕士研究生,在刘海韬研究员的指导下进行研究。目前主要研究领域为连续纤维增韧陶瓷基复合材料。
引用本文:    
马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
MA Xin, LIU Haitao, JIANG Ru, SUN Xun. Application of the He-Hutchinson Model in the Study of Continuous Ceramic Fiber Toughened Ceramic Matrix Composites. Materials Reports, 2024, 38(3): 22100252-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100252  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22100252
1 Zhang W, Xiang Y, Peng Z H, et al. Advanced Ceramics, 2021, 42(3), 170(in Chinese).
张稳, 向阳, 彭志航, 等. 现代技术陶瓷, 2021, 42(3), 170.
2 Liu H T. Continuous alumina fiber toughened ceramic matrix composites, Science Press, China, 2022, pp. 310 (in Chinese).
刘海韬. 连续氧化铝纤维增韧陶瓷基复合材料, 科学出版社, 2022, pp. 310.
3 Li L, Xia Z. In:Advances in ceramic matrix composites (second edition), Low I M, ed., Woodhead, UK, 2018, pp. 355.
4 Fan X, Dang X, Ma Y, et al. Ceramics International, 2019, 45(17), 23104.
5 Liu H T, Yang L W, Sun X, et al. Carbon, 2016, 109, 435.
6 Zhang H, Song Y D. Journal of Aerospace Power, 2007, 22(10), 1730(in Chinese).
张鸿, 宋迎东. 航空动力学报, 2007, 22(10), 1730.
7 Gong J H. Advanced Ceramics, 2021, 42(C2), 287(in Chinese).
龚江宏. 现代技术陶瓷, 2021, 42(C2), 287.
8 Zhang R, Zhang X, Kang J, et al. Theoretical & Applied Fracture Mechanics, 2021, 114, 103037.
9 Liu Y Z. Research on crack propagation and fracture mode of domestic composite for large aircraft. Master's Thesis, Harbin Engineering University, China, 2009 (in Chinese).
刘易卓. 大飞机用国产复合材料裂纹扩展与断裂模式的研究. 硕士学位论文, 哈尔滨工程大学, 2009.
10 He M Y, Hutchinson J W. International Journal of Solids and Structures, 1989, 25(9), 1053.
11 Dundurs J, Bogy D B. Journal of Applied Mechanics, 1969, 35(3), 650.
12 Fujita H, Jefferson G, McMeeking R M, et al. Journal of the American Ceramic Society, 2004, 87(2), 261.
13 Liu F, Yi M, Ran L, et al. Surfaces and Interfaces, 2021, 23, 100951.
14 Wang Y, Liu H, Cheng H, et al. Ceramics International, 2015, 41(1), 1065.
15 Shimoda K, Hinoki T, Park Y. Composites Part A: Applied Science and Manufacturing, 2018, 115, 397.
16 Xu Z, Sun X, Xiong K, et al. Ceramics International, 2021, 47(5), 5896.
17 Chen W H, Wang L Y, Zhang H Y, et al. Explosion and Shock Waves, 2021, 41(4), 109(in Chinese).
陈伟华, 王丽燕, 张晗翌, 等. 爆炸与冲击, 2021, 41(4), 109.
18 General Administration of Quality Supervision. GB/T 23806-2009. Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam(SEPB) method, Standards Press of China, China, 2009(in Chinese).
中华人民共和国国家质量监督检验检疫总局. GB/T 23806-2009. 精细陶瓷断裂韧性试验方法—单边预裂纹梁(SEPB)法, 质检出版社, 2009.
19 Tattersall H G, Tappin G. Journal of Materials Science, 1966, 1(3), 296.
20 BS ISO 18608-2017. Fine ceramics (advanced ceramics, advanced technical ceramics), British Standards Institution, 2017.
21 Oliver W C, Pharr G M. Journal of Materials Research, 2004, 19(1), 3.
22 ISO 14577-1-2015. Metallic materials: instrumented indentation test for hardness and materials parameters, International Organization for Stan-dardization, 2015.
23 Liu H T, Yang L W, Han S. Journal of Inorganic Materials, 2018, 33(7), 711(in Chinese).
刘海韬, 杨玲伟, 韩爽. 无机材料学报, 2018, 33(7), 711.
24 Yang L W, Wang J Y, Liu H T, et al. Composites Part B: Engineering, 2017, 119, 79.
25 Li Y, Zhou M. Journal of the Mechanics and Physics of Solids, 2013, 61(2), 489.
26 Leatherbarrow A, Wu H. Journal of the European Ceramic Society, 2012, 32(3), 579.
27 Sebastiani M, Johanns K E, Herbert E G, et al. Current Opinion in Solid State and Materials Science, 2015, 19(6), 324.
28 Frazer D, Abad M D, Krumwiede D, et al. Composites Part A: Applied Science and Manufacturing, 2015, 70, 93.
29 Mueller M G, Pejchal V, Žagar G, et al. Acta Materialia, 2015, 86(14), 385.
30 Sebastiani M, Johanns K E, Herbert E G, et al. Philosophical Magazine, 2015, 95(16-18), 1928.
31 Sun X, Jiang R, Liu H, et al. RSC Advances, 2019, 9(45), 26373.
32 Henry R, Blay T, Douillard T, et al. Mechanics of Materials, 2019, 136, 103086.
33 Yang L W, Liu H T, Cheng H F. Composites Part B: Engineering, 2017, 129, 152.
34 Mueller W M, Moosburger-Will J, Sause M G R, et al. Journal of the European Ceramic Society, 2013, 33(2), 441.
35 Mueller W M, Moosburger-Will J, Sause M G R, et al. Journal of the European Ceramic Society, 2015, 35(11), 2981.
36 Gavalda-Diaz O, Manno R, Melro A, et al. Acta Materialia, 2021, 215, 1359.
37 Sørensen B F. Mechanics of Materials, 2017, 104, 38.
38 Xiang W, Li X, Ni H, et al. Composite Structures, 2022, 300, 116143.
39 Boakye E E, Key T S, Parthasarathy T A, et al. Journal of the American Ceramic Society, 2018, 101(1), 91.
40 De M, Robin M G, Gale L, et al. Journal of the American Ceramic Society, 2021, 104(6), 2741.
41 Callaway E B, Christodoulou P G, Zok F W. Journal of the Mechanics and Physics of Solids, 2019, 132, 103673.
42 Jiang R. Preparation and performance of continuous alumina fiber reinforced alumina matrix composites. Ph. D. Thesis, National University of Defense Technology, China, 2019 (in Chinese).
姜如. 连续氧化铝纤维增强氧化铝基复合材料的制备与性能研究. 博士学位论文, 国防科技大学, 2019.
43 Wang Y. Preparation and performance of aluminosilicate fiber-reinforced oxide ceramic matrix composites. Ph. D. Thesis, National University of Defense Technology, China, 2015(in Chinese).
王义. 铝硅酸盐纤维增强氧化物陶瓷基复合材料的制备与性能. 博士学位论文, 国防科学技术大学, 2015.
44 Lamon J, Rebillat F, Evans A G. Journal of the American Ceramic Society, 1995, 78(2), 401.
45 Ma X K, Yin X W, Cao X Y, et al. Ceramics International, 2016, 42(2), 3652.
46 Jelitto H, Felten F, Swain M V, et al. Journal of Applied Mechanics, 2007, 74(6), 1197.
47 Echeberria J, Tarazona J, He J Y, et al. Journal of the European Ceramic Society, 2002, 22(11), 1801.
48 Liu H T, Yang L W, Han S, et al. Journal of the European Ceramic Society, 2017, 37(3), 883.
49 Blaese D, Garcia D E, Guglielmi P, et al. Journal of the European Ceramic Society, 2015, 35(5), 1593.
50 Kerans R J, Parthasarathy T A. Composites Part A Applied Science and Manufacturing, 1999, 30A (4), 521.
51 Kerans R J, Hay R S, Parthasarathy T A, et al. Journal of the American Ceramic Society, 2002, 85(11), 2599.
52 Huang Y F. Boundary element analysis of dynamic fracture in inclusion composites. Master's Thesis, Beijing University of Technology, China, 2011(in Chinese).
黄祎丰. 夹杂复合材料中动态断裂的边界元分析. 硕士学位论文, 北京工业大学, 2011.
53 Lei J. Transient boundary element numerical simulation of rapid crack propagation in composite materials. Ph. D. Thesis, Beijing Jiaotong University, China, 2005 (in Chinese).
雷钧. 复合材料中裂纹快速扩展的瞬态边界元数值模拟. 博士学位论文, 北京交通大学, 2005.
54 Leguillon D, Lacroix C, Martin É. Journal of the Mechanics and Physics of Solids, 2000, 48(10), 2137.
55 Lacroix C, Leguillon D, Martin E. Composites Science and Technology, 2002, 62(4), 519.
56 Martin E, Leguillon D, Lacroix C. Composite Interfaces, 2002, 9(2), 143.
57 Carrère N, Martin E, Lamon J. Composites Part A Applied Science and Manufacturing, 2000, 31A (11), 1179.
58 Dai J, He L, Mu R, et al. Journal of Composite Materials, 2022, 56(9), 1379.
59 Yang J, Chen J, Ye F, et al. Ceramics International, 2022, 48(22), 32628.
[1] 向天意, 李端, 李俊生, 王衍飞, 万帆, 刘荣军. 高温电磁透波材料的研究进展[J]. 材料导报, 2023, 37(18): 22090029-11.
[2] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[3] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[4] 冯士杰, 宋环君, 陈昊然, 孙娅楠, 杨小健, 张宝鹏, 杨良伟, 刘伟. 反应熔渗工艺制备碳纤维增强陶瓷基复合材料研究进展[J]. 材料导报, 2022, 36(22): 22050068-6.
[5] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[6] 王耀城, 刘定坤, 刘伟, 吕阳, 郑愚. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.
[7] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[10] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[11] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[12] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[13] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed