Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22110109-6    https://doi.org/10.11896/cldb.22110109
  无机非金属及其复合材料 |
微波法制备碳纳米材料的机理及进展
王加悦, 周涵*
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Microwave Synthesis of Carbon Nanomaterials:Mechanisms and Recent Progress
WANG Jiayue, ZHOU Han*
State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 16843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波法具有加热快速、易于控制、反应均匀等优点,是制备功能性碳纳米材料的重要技术。其制备原理是基于碳基材料优异的本征介电性能,碳基材料与微波电磁场相互作用产生介电损耗,快速形成局部高能场,实现高速制备。本文首先简要介绍了微波与物质的相互作用机理,然后分别从微波在制备过程中的作用、关键实验参数以及微波制备的碳材料的特征等方面详细介绍了微波作为能量输入制备一维碳纳米管、二维石墨烯以及三维纳米多孔碳的优势,最后对宏量快速制备多功能和高性能碳纳米材料的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王加悦
周涵
关键词:  微波法  碳纳米材料  碳纳米管  石墨烯  多孔碳    
Abstract: Microwave method is an important technique for the synthesis of functional carbon nanomaterials, with advantages of rapid heating, easy to control and uniform reaction. The synthetic mechanism is based on the excellent intrinsic dielectric properties of carbon materials, which can have strong interactions with the microwave electromagnetic field, thus causing strong dielectric loss and localized high energy field for the fast synthesis. In this paper, we briefly introduce the interaction mechanism between microwave and matter. Then the advantages of microwave as energy input for the preparation of 1D carbon nanotubes, 2D graphene and 3D nano-porous carbon are introduced in detail from aspects of the microwave functions, key experimental parameters and the characteristics of carbon materials prepared by microwave. Finally, approaches for fast synthesis of multifunctional and high-performance carbon nanomaterials on large scale are prospected.
Key words:  microwave    carbon nanomaterial    carbon nanotube    graphene    porous carbon
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2017YFE0127100)
通讯作者:  *周涵,上海交通大学材料科学与工程学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013年在日本国立物质材料研究所从事博士后工作,2013—2014年在德国马普所胶体与界面研究所从事洪堡学者研究。近年来,在PNAS、Adv.Mater.、Adv.Funct.Mater.、ACS Nano等发表SCI文章70余篇,主要研究方向为仿生材料与智能材料、超材料、热调控材料。hanzhou_81@sjtu.edu.cn   
作者简介:  王加悦,2019年6月于大连理工大学获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生。目前主要研究领域为微波法功能材料的制备及性能。
引用本文:    
王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
WANG Jiayue, ZHOU Han. Microwave Synthesis of Carbon Nanomaterials:Mechanisms and Recent Progress. Materials Reports, 2024, 38(3): 22110109-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110109  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22110109
1 Yin J, Zhang W, Alhebshi N A, et al. Small Methods, 2020, 4(3), 1900853.
2 Zhu J, Mu S. Advanced Functional Materials, 2020, 30(25), 2001097.
3 Quan B, Shi W, Ong S J H, et al. Advanced Functional Materials, 2019, 29(28), 1901236.
4 Gong W, Yuan Q, Chen C, et al. Advanced Materials, 2019, 31(49), 1906051.
5 Yao X, Hawkins S C, Falzon B G. Carbon, 2018, 136, 130.
6 Wang J, Wu W, Kondo H, et al. Nanotechnology, 2022, 33(34), 342002.
7 Kang Y, Du H, Jiang B, et al. Journal of Materials Chemistry A, 2022, 10(12), 6560.
8 Wan J, Huang L, Wu J, et al. Advanced Functional Materials, 2018, 28(22), 1800382.
9 Seong K D, Jin X, Kim D, et al. Journal of Electroanalytical Chemistry, 2020, 874, 114464.
10 Schwenke A M, Hoeppener S, Schubert U S. Advanced Materials, 2015, 27(28), 4113.
11 Micheli D, Apollo C, Pastore R, et al. Composites Science and Technology, 2010, 70(2), 400.
12 Wang Z, Yu C, Huang H, et al. Nano Energy, 2021, 85, 106027.
13 Zeng X, Cheng X, Yu R, et al. Carbon, 2020, 168(6), 606.
14 Green M, Chen X. Journal of Materiomics, 2019, 5(4), 503.
15 Du Y, Liu T, Yu B, et al. Materials Chemistry and Physics, 2012, 135(2-3), 884.
16 Harutyunyan A R, Pradhan B K, Chang J, et al. The Journal of Physical Chemistry B, 2002, 106(34), 8671.
17 Wadhawan A, Garrett D, Perez J M. Applied Physics Letters, 2003, 83(13), 2683.
18 Zhao Y, He J. Carbon, 2021, 178, 734.
19 Zhang P, Shu Y, Wang Y, et al. Chemical Engineering Journal, 2022, 443, 136050.
20 Liu Z, Wang J, Kushvaha V, et al. Chemical Communications, 2011, 47(35), 9912.
21 Nie H, Cui M, Russell T P. Chemical Communications, 2013, 49(45), 5159.
22 Jie X, Li W, Slocombe D, et al. Nature Catalysis, 2020, 3(11), 902.
23 Chen W, Yan L, Bangal P R. Carbon, 2010, 48(4), 1146.
24 Murugan A V, Muraliganth T, Manthiram A. Chemistry of Materials, 2009, 21(21), 5004.
25 Bajpai R, Wagner H D. Carbon, 2015, 82, 327.
26 Sridhar V, Lee I, Chun H H, et al. Carbon, 2015, 87, 186.
27 Hülsey M J, Lim C W, Yan N. Chemical Science, 2020, 11(6), 1456.
28 Hildago-Oporto P, Navia R, Hunter R, et al. Journal of Environmental Management, 2019, 244, 83.
29 Bajpai R, Wagner H D. Carbon, 2015, 82, 327.
30 Fidalgo B, Fernández Y, Zubizarreta L, et al. Applied Surface Science, 2008, 254(11), 3553.
31 Hong E H, Lee K H, Oh S H, et al. Advanced Functional Materials, 2003, 13(12), 961.
32 Vázquez E, Prato M. ACS Nano, 2009, 3(12), 3819.
33 Yang H, Zhou C, An J, et al. Journal of Alloys and Compounds, 2022, 897, 163257.
34 Sreekanth T V M, Dillip G R, Nagajyothi P C, et al. Applied Catalysis B:Environmental, 2021, 285, 119793.
35 Matsumoto M, Saito Y, Park C, et al. Nature Chemistry, 2015, 7(9), 730.
36 Janowska I, Chizari K, Ersen O, et al. Nano Research, 2010, 3(2), 126.
37 Wang P, Guo B, Ma H, et al. Chemical Engineering Journal, 2020, 399, 125758.
38 Hu H, Zhao Z, Zhou Q, et al. Carbon, 2012, 50(9), 3267.
39 Zhao Y, He J. Carbon, 2019, 148(46), 159.
40 Li Z, Yao Y, Lin Z, et al. Journal of Materials Chemistry, 2010, 20(23), 4781.
41 Zou X, Hao J, Qiang Y, et al. Journal of Colloid and Interface Science, 2020, 565, 288.
42 Voiry D, Yang J, Kupferberg J, et al. Science, 2016, 353(6306), 1413.
43 Park S H, Bak S M, Kim K H, et al. Journal of Materials Chemistry, 2011, 21(3), 680.
44 Liu R, Zhang Y, Ning Z, et al. Angewandte Chemie International Edition, 2017, 56(49), 15677.
45 Zedan A F, Sappal S, Moussa S, et al. The Journal of Physical Chemistry C, 2010, 114(47), 19920.
46 Malesevic A, Vitchev R, Schouteden K, et al. Nanotechnology, 2008, 19(30), 305604.
47 Wang Z, Li Y, Liu J, et al. Carbon, 2021, 172, 26.
48 Zafar M A, Varghese O K, Robles H F C, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5797.
49 Fei H, Dong J, Wan C, et al. Advanced Materials, 2018, 30(35), e1802146.
50 Chahal S, Nair A K, Ray S J, et al. Chemical Engineering Journal, 2022, 450(7772), 138447.
51 Gong H, Wei Z, Gong Z, et al. Advanced Functional Materials, 2022, 32(5), 2106886.
52 Yang W, Li X, Li Y, et al. Advanced Materials, 2019, 31(6), e1804740.
53 Fan M, Liao D, Aboud M F A, et al. Angewandte Chemie International Edition, 2020, 59(21), 8247.
54 Green M, Liu Z, Xiang P, et al. Materials Today Chemistry, 2018, 9, 140.
55 Yang W, Zhao Q, Zhou Y, et al. Advanced Engineering Materials, 2022, 24(4), 2100964.
56 Tan J, Thomas T, Liu J, et al. Chemical Engineering Journal, 2020, 395, 125151.
57 Wang B, Tang J, Zhang X, et al. Chemical Engineering Journal, 2022, 437, 135295.
58 Xu Y, Sheng K, Li C, et al. ACS Nano, 2010, 4(7), 4324.
59 Thiruppathi A R, van der Zalm J, Zeng L, et al. Journal of Energy Sto-rage, 2022, 48, 103962.
60 Xia X, Cheng C F, Zhu Y, et al. Microporous and Mesoporous Materials, 2021, 310, 110639.
61 Dudley G B, Richert R, Stiegman A E. Chemical Science, 2015, 6(4), 2144.
62 Kappe C O, Pieber B, Dallinger D. Angewandte Chemie International Edition, 2013, 52(4), 1088.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 覃玲霜, 刘醒, 邓立波. 葡萄糖衍生多孔碳的表面电荷调控与电吸附Cd2+性能[J]. 材料导报, 2024, 38(6): 23040284-8.
[8] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[9] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[10] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[11] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[12] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[13] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[14] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[15] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed