Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040284-8    https://doi.org/10.11896/cldb.23040284
  电化学能源材料与器件 |
葡萄糖衍生多孔碳的表面电荷调控与电吸附Cd2+性能
覃玲霜, 刘醒, 邓立波*
深圳大学化学与环境工程学院,广东 深圳 518055
Tailoring of the Surface Charge of Glucose-derived Porous Carbons and Their Performance for Electrosorption of Cd2+
QIN Lingshuang, LIU Xing, DENG Libo*
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 19437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电容去离子(CDI)是一种基于静电吸附的脱盐技术,由于其操作简便、能耗低、无二次污染等优点,有望用于冶金、电镀等行业所产生的废水中Cd2+的去除。目前限制其发展的关键难题在于电极材料对Cd2+的吸附容量较低。以葡萄糖为碳源,以硫脲与硫粉为掺杂剂,通过高温碳化制备了S、N共掺杂的多孔碳材料。以所制备的碳材料为电极组装了CDI系统,测试了其电吸附Cd2+的性能。以相同的电极材料组装的对称型CDI系统在1.2 V下对Cd2+的吸附容量达到53 mg·g-1。进一步研究发现,S、N掺杂使碳材料表面带有负电荷,因此,以其为阴极、电中性的商业活性炭YP-50F为阳极组装的非对称CDI系统的吸附容量达到88.37 mg·g-1,比对称体系高66.73%;而且经过七次吸-脱附循环后,容量保持率也由对称体系的62.2%提升至81.5%。通过XPS分析证明电极去除Cd2+的机理为双电层与碳材料表面官能团络合的协同作用。本工作所开发的高性能多孔碳电极及非对称电极的匹配策略有望推动CDI技术在Cd2+及其他重金属废水治理领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
覃玲霜
刘醒
邓立波
关键词:  电容去离子  葡萄糖  多孔碳  镉离子  表面电荷    
Abstract: Capacitive deionization (CDI) is a promising technology for Cd2+ removal owing to the advantages such as simple and convenient operation, low energy consumption, and free of secondary pollution. The key challenge limiting its development is the low adsorption capacity of electrode materials for Cd2+. In this work, we used glucose as carbon source, thiourea and sulfur as the dopant to prepare porous carbon materials co-doped with S and N through high-temperature carbonization, and explored its electrochemical adsorption performance for Cd2+, by using the prepared carbon material as the electrode. The symmetrical CDI system assembled with identical material for both electrodes achieved a removal capacity of 53 mg·g-1 for Cd2+ at 1.2 V. Furthermore, it was found that with the increase of S and N doping, the surface of carbon materials carries negative charges. Therefore, the asymmetric CDI system assembled by using it as the anode and commercial activated carbon YP-50F as the cathode, and Cd2+ removal capacity reached 88.37 mg·g-1, which was 66.73% higher than symmetrical CDI system. After seven cycles of adsorption-desorption, the capacity retention rate also increased from 62.2% to 81.5%. The removal mechanism of Cd2+ was explored by XPS, and the results showed that it was the synergism of double electric layer and surface functional groups. The matching strategy of high-perfor-mance porous carbon electrodes and asymmetric electrodes developed in this work would pave the way for practical application of CDI technology in the treatment of Cd2+ and other heavy metal wastewater.
Key words:  capacitive deionization    glucose    porous carbon    cadmium    surface charge
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TB332  
基金资助: 国家自然科学基金(22178223)
通讯作者:  *邓立波,深圳大学副教授、博士研究生导师、新能源科学与工程系副主任、深圳大学优秀青年教师。主要研究领域为碳基能源材料、二次电池、高功率电容器、电催化剂及电化学金属资源回收。主持国家自然科学基金面上项目等课题;在Advanced Materials、Chemical Society Reviews等期刊发表论文120余篇,总引用6 000余次,H因子46,获授权发明专利7项,入选2019—2022年度全球前2%高被引科学家、深圳市海外高层次人才、南山区高层次人才。   
作者简介:  覃玲霜,2016年6月于济南大学获得理学学士学位。现为深圳大学化学与环境工程学院硕士研究生,在邓立波副教授的指导下进行研究。目前主要研究领域为生物质衍生多孔碳电容去除镉离子。
引用本文:    
覃玲霜, 刘醒, 邓立波. 葡萄糖衍生多孔碳的表面电荷调控与电吸附Cd2+性能[J]. 材料导报, 2024, 38(6): 23040284-8.
QIN Lingshuang, LIU Xing, DENG Libo. Tailoring of the Surface Charge of Glucose-derived Porous Carbons and Their Performance for Electrosorption of Cd2+. Materials Reports, 2024, 38(6): 23040284-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040284  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040284
1 Rabiul Awual, Khraisheh Majeda, Alharthi Nabeel, et al. Che-mical Engineering Journal, 2018, 343, 118.
2 Yang X, Li X Y, Zhou J P, et al. Materials Reports, 2023, 37(9), 20190197.
杨旭, 历新宇, 周娟苹, 等. 材料导报, 2023, 37(9), 20190197.
3 Yun Kon Kim, Kim Taegeon, Kim Yonghwan, et al. Journal of Hazar-dous Materials, 2017, 340, 130.
4 Marta Mon, Bruno Rosaria, Ferrando-Soria Jesus, et al. Journal of Materials Chemistry A, 2018, 6(12), 4912.
5 Karishma Maheshwari, Agarwal Madhu, Singh Solanki Yogendra. Mate-rials Today: Proceedings, 2021, 43, 1204.
6 Jimoh Oladunni, Zain Jerina, Hai Abdul, et al. Separation and Purification Technology, 2018, 207, 291.
7 Kim K, Cotty S, Elbert J, et al. Advanced Materials, 2020, 32(6), 1906877.
8 Nayeong Kim, Lee Euna, Su Xiao, et al. Desalination, 2021, 503, 114950.
9 Sung Pil Hong, Yoon Hansun, Lee Jaehan, et al. Journal of Colloid and Interface Science, 2020, 564, 1.
10 Bin Feng, Khan Zaheen Ullah, Khan Wasid Ullah. Environmental Science: Nano, 2023, 10(4), 1163.
11 Thai Hoang Nguyen, Nguyen Van Vien, Nguyen Ngan Tuan, et al. Journal of Porous Materials, DOI:10. 1007/s10934-022-01411-1.
12 Zhao R, Biesheuvel P M, Miedema H, et al. The Journal of Physical Chemistry Letters, 2010, 1(1), 205.
13 Izaak Cohen, Avraham Eran, Bouhadana Yaniv, et al. Electrochimica Acta, 2015, 153, 106.
14 Adrian Serrano Mora, Soleymani Amir Peyman, Jankovic Jasna, et al. Desalination, 2022, 532, 115707.
15 Kamilla M B, Oliveira K S G C, Silva D S A, et al. Electrochimica Acta, 2021, 388, 138631.
16 Li-Hua Shao, Biener Jürgen, Kramer Dominik, et al. Physical Chemistry Chemical Physics, 2010, 12(27), 7580.
17 Liu Jiayang, Hu Changwei, Huang Qingguo. Bioresource Technology, 2019, 271, 487.
18 Htet Htet Kyaw, Myint Myo Tay Zar, Al-Harthi Salim, et al. Journal of Hazardous Materials, 2020, 385, 121565.
19 Zhe Huang, Lu Lu, Cai Zhenxiao, et al. Journal of Hazardous Materials, 2016, 302, 323.
20 Lin Shiwei, Yang Xiong, Liu Lihu, et al. Journal of Environmental Ma-nagement, 2022, 301, 113921.
21 Yin Taozhu, Zhang Yongsheng, Dong Duo, et al. Journal of Cleaner Production, 2022, 355, 131814.
22 Zhao Cuijiao, Wang Xinlei, Zhang Shengbo, et al. Environmental Science Water Research & Technology, 2020, 6(2), 331.
23 Chen Yaping, Peng Liang, Zeng Qingru, et al. Clean Technologies and Environmental Policy, 2015, 17(1), 49.
24 Yang Xiong, Peng Qichuan, Liu Lihu, et al. Chemosphere, 2020, 247, 125822.
25 Wang Shoujun, Chen Dezhi, Zhang Zhixia, et al. Separation and Purification Technology, 2022, 290, 120912.
26 Liu Yang, Qiao Junlian, Sun Yuankui, et al. Environmental Science & Technology, 2022, 56(5), 3127.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[3] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[4] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[5] 谢发之, 张梦, 张道德, 杨少华, 宋恒帅, 马钰佳, 方亮, 邵永刚. N、P/RC@Pb复合材料在铅碳电池负极中的应用[J]. 材料导报, 2024, 38(19): 23030049-9.
[6] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[7] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[8] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[9] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[10] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[11] 吴平平, 王亚琴, 陈涛, 邹文生. 二氟苯硼酸源双发射碳点的葡萄糖传感与数字编码[J]. 材料导报, 2023, 37(23): 22030295-5.
[12] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[13] 刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
[14] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[15] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed