Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040217-6    https://doi.org/10.11896/cldb. 23040217
  电化学能源材料与器件 |
锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究
陈京健, 徐能能*, 芦拓, 魏群山*
东华大学环境科学与工程学院,上海 201600
Design and Reversibility Study of Nitrogen-doped Porous Carbon Surface Functional Layer for Zinc Anodes
CHEN Jingjian, XU Nengneng*, LU Tuo, WEI Qunshan*
College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 8324KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锌阳极因枝晶生长、析氢、形变和钝化等挑战,成为限制锌空气电池充放电循环性能的关键因素。本工作以聚季铵盐为碳源和氮源,通过硬模板法制备出具有丰富介孔结构的碳材料,并将其作为锌阳极的表面功能层(N-MC@Zn)。其中,N-MC@Zn的比表面积高达590.06 m2·g-1,平均孔径为22 nm。研究表明,锌阳极表面构建氮掺杂的多孔碳功能层,在一定程度上有效缓解了上述寄生反应带来的负面影响。特别是多孔碳涂层丰富的孔隙为锌沉积/剥离提供了缓冲区,极大提高了锌离子的沉积动力学,稳定了其沉积/剥离过程,缓解了锌阳极的析氢腐蚀;此外,多孔碳涂层内的各向异性避免了尖端效应,抑制了枝晶生长。基于上述优势,N-MC@Zn表现出优异的充放电稳定性(140 h,700次循环)、倍率充放电特性(0.5C~10C)以及放电容量。以上结果表明,多孔碳材料可作为高性能锌阳极功能层材料,为锌阳极涂层设计领域提供了新的视角。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈京健
徐能能
芦拓
魏群山
关键词:  锌阳极  介孔碳  表面改性  锌枝晶  锌空气电池    
Abstract: Zinc anode has become a key factor limiting the cycling performance of zinc-air batteries due to challenges such as dendrite growth, hydrogen evolution, deformation, and passivation. In this study, carbon materials with abundant mesoporous structures were prepared using quaternary ammonium salts as carbon and nitrogen sources through a hard template method, and they were used as a surface functional layer for the zinc anode (N-MC@Zn). The N-MC@Zn material had a high specific surface area of 590.06 m2·g-1 and an average pore size of 22 nm. The research showed that constructing a nitrogen-doped porous carbon functional layer on the surface of the zinc anode effectively mitigated the negative effects caused by the aforementioned challenges. In particular, the abundant pores in the porous carbon coating provided a buffer zone for zinc deposition/stripping, greatly accelerating the deposition kinetics and stabilizing the deposition/stripping process of zinc ions, thus alleviating hydrogen evolution corrosion of the zinc anode. Furthermore, the anisotropy within the porous carbon coating prevented the growth of dendrites by avoiding the tip effect. Based on these advantages, N-MC@Zn exhibited excellent discharge and charge stability (140 h, 700 cycles), rate capability (from 0.5C to 10C), and discharge capacity. These results demonstrate that porous carbon materials can serve as high-performance functional layer materials for zinc anodes and provide a new perspective for the design of zinc anode coatings.
Key words:  zinc anode    mesoporous carbon    surface modification    zinc dendrite    zinc-air batteries
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TM911  
基金资助: 中央高校基本科研业务费专项项目(2232022D-18);上海市扬帆计划(22YF1400700); 国家自然科学基金面上项目(21972017);上海市“科技创新行动计划”港澳台科技合作项目(19160760600);上海市“科技创新行动计划”基础重点项目(19JC1410500)
通讯作者:  *徐能能,东华大学副研究员、硕士研究生导师。2019年获东华大学环境科学与工程工学博士学位,并在美国University of Louisiana at Lafayatee开展联合培养、博士后以及助理教授等研究工作,长期致力于能源环境材料的开发、设计及应用,包括小分子电催化电极材料结构优化、电极表界面调控及高比能锌空气电池/燃料电池等;发表期刊论文40余篇,授权发明/实用新型专利16项;先后主持/参与了美国能源部/国家自然科学基金项目、上海市启明星计划扬帆专项以及中央高校基础研究项目等项目。
魏群山,东华大学副教授、硕士研究生导师,莫伊大学孔子学院中方院长。2007年于中国科学院生态环境研究中心获环境科学与工程理学博士学位。长期致力于环境水质学、水污染控制理论与工程技术、混凝机理及环境微界面过程等多个领域。主持国家自然科学基金面上项目、青年科学基金项目多项;发表论文数十篇,申请国家专利多项,与国内外学者合作著作一部。   
作者简介:  陈京健,2021年6月于南京理工大学泰州科技学院获得工学学士学位,于2023年6月在东华大学获得工学硕士学位。主要研究领域为锌空气电池锌负极。
引用本文:    
陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
CHEN Jingjian, XU Nengneng, LU Tuo, WEI Qunshan. Design and Reversibility Study of Nitrogen-doped Porous Carbon Surface Functional Layer for Zinc Anodes. Materials Reports, 2024, 38(6): 23040217-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb. 23040217  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040217
1 Zhang X, Wang X G, Xie Z, et al. Green Energy & Environment, 2016, 1(1), 4.
2 Mainar A R, Colmenares L C, Blázquez J A, et al. International Journal of Energy Research, 2018, 42(3), 903.
3 Xie C, Li Y, Wang Q, et al. Carbon Energy, 2020, 2(4), 540.
4 Zheng X, Ahmad T, Chen W. Energy Storage Materials, 2021, 39, 365.
5 Yi Z, Chen G, Hou F, et al. Advanced Energy Materials, 2021, 11(1), 2003065.
6 Stock D, Dongmo S, Janek J, et al. ACS Energy Letters, 2019, 4(6), 1287.
7 Li C, Wang L, Zhang J, et al. Energy Storage Materials, 2022, 44, 104.
8 Du W, Ang E H, Yang Y, et al. Energy & Environmental Science, 2020, 13(10), 3330.
9 Harting K, Kunz U, Turek T. Zeitschrift für Physikalische Chemie, 2012, 226(2), 151.
10 Zhang Y, Deng Y P, Wang J, et al. Energy Storage Materials, 2021, 35, 538.
11 Leong K W, Wang Y, Ni M, et al. Renewable and Sustainable Energy Reviews, 2022, 154, 111771.
12 Xie C, Li Y, Wang Q, et al. Carbon Energy, 2020, 2(4), 540.
13 Wang L, Wang X, Song B, et al. Energy Technology, 2023, 11(2), 2201084.
14 Zhang Y, Wang Z, Guo S, et al. Electrochimica Acta, 2023, 437, 141502.
15 Yin Y, Wang S, Zhang Q, et al. Advanced Materials, 2020, 32(6), 1906803.
16 Chen X, Zhou Z, Karahan H E, et al. Small Methods, 2018, 14(44), 1801929.
17 Yu Y, Xu W, Liu X, et al. Advanced Sustainable Systems, 2020, 4(9), 2000082.
18 Wang L, Huang W, Guo W, et al. Advanced Functional Materials, 2022, 32(1), 2108533.
19 Shen Y, Wang Q, Liu J, et al. Acta Physico-Chimica Sinica. , 2022, 38(11), 2204048.
20 Nie W, Cheng H, Sun Q, et al. Small Methods, 2023, 17, 2201572.
21 Tao F, Liu Y, Ren X, et al. Journal of Energy Chemistry, 2022, 66, 397.
22 Wang Y, Li A, Cheng C. Materials Today Chemistry, 2022, 26, 101057.
23 Fan X, Yang H, Wang X, et al. Advanced Materials Interfaces, 2021, 8(7), 2002184.
24 Li W, Wang K, Zhou M, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22059.
25 Chen S, Chen J, Liao X, et al. ACS Energy Letters, 2022, 7(11), 4028.
26 Qin H, Kuang W, Huang D, et al. Journal of Materials Chemistry A, 2022, 10(34), 17440.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[5] 李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
[6] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[7] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[8] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[9] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[10] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[11] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[12] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[13] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[14] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[15] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed