Abstract: Zinc anode has become a key factor limiting the cycling performance of zinc-air batteries due to challenges such as dendrite growth, hydrogen evolution, deformation, and passivation. In this study, carbon materials with abundant mesoporous structures were prepared using quaternary ammonium salts as carbon and nitrogen sources through a hard template method, and they were used as a surface functional layer for the zinc anode (N-MC@Zn). The N-MC@Zn material had a high specific surface area of 590.06 m2·g-1 and an average pore size of 22 nm. The research showed that constructing a nitrogen-doped porous carbon functional layer on the surface of the zinc anode effectively mitigated the negative effects caused by the aforementioned challenges. In particular, the abundant pores in the porous carbon coating provided a buffer zone for zinc deposition/stripping, greatly accelerating the deposition kinetics and stabilizing the deposition/stripping process of zinc ions, thus alleviating hydrogen evolution corrosion of the zinc anode. Furthermore, the anisotropy within the porous carbon coating prevented the growth of dendrites by avoiding the tip effect. Based on these advantages, N-MC@Zn exhibited excellent discharge and charge stability (140 h, 700 cycles), rate capability (from 0.5C to 10C), and discharge capacity. These results demonstrate that porous carbon materials can serve as high-performance functional layer materials for zinc anodes and provide a new perspective for the design of zinc anode coatings.
通讯作者: *徐能能,东华大学副研究员、硕士研究生导师。2019年获东华大学环境科学与工程工学博士学位,并在美国University of Louisiana at Lafayatee开展联合培养、博士后以及助理教授等研究工作,长期致力于能源环境材料的开发、设计及应用,包括小分子电催化电极材料结构优化、电极表界面调控及高比能锌空气电池/燃料电池等;发表期刊论文40余篇,授权发明/实用新型专利16项;先后主持/参与了美国能源部/国家自然科学基金项目、上海市启明星计划扬帆专项以及中央高校基础研究项目等项目。 魏群山,东华大学副教授、硕士研究生导师,莫伊大学孔子学院中方院长。2007年于中国科学院生态环境研究中心获环境科学与工程理学博士学位。长期致力于环境水质学、水污染控制理论与工程技术、混凝机理及环境微界面过程等多个领域。主持国家自然科学基金面上项目、青年科学基金项目多项;发表论文数十篇,申请国家专利多项,与国内外学者合作著作一部。
1 Zhang X, Wang X G, Xie Z, et al. Green Energy & Environment, 2016, 1(1), 4. 2 Mainar A R, Colmenares L C, Blázquez J A, et al. International Journal of Energy Research, 2018, 42(3), 903. 3 Xie C, Li Y, Wang Q, et al. Carbon Energy, 2020, 2(4), 540. 4 Zheng X, Ahmad T, Chen W. Energy Storage Materials, 2021, 39, 365. 5 Yi Z, Chen G, Hou F, et al. Advanced Energy Materials, 2021, 11(1), 2003065. 6 Stock D, Dongmo S, Janek J, et al. ACS Energy Letters, 2019, 4(6), 1287. 7 Li C, Wang L, Zhang J, et al. Energy Storage Materials, 2022, 44, 104. 8 Du W, Ang E H, Yang Y, et al. Energy & Environmental Science, 2020, 13(10), 3330. 9 Harting K, Kunz U, Turek T. Zeitschrift für Physikalische Chemie, 2012, 226(2), 151. 10 Zhang Y, Deng Y P, Wang J, et al. Energy Storage Materials, 2021, 35, 538. 11 Leong K W, Wang Y, Ni M, et al. Renewable and Sustainable Energy Reviews, 2022, 154, 111771. 12 Xie C, Li Y, Wang Q, et al. Carbon Energy, 2020, 2(4), 540. 13 Wang L, Wang X, Song B, et al. Energy Technology, 2023, 11(2), 2201084. 14 Zhang Y, Wang Z, Guo S, et al. Electrochimica Acta, 2023, 437, 141502. 15 Yin Y, Wang S, Zhang Q, et al. Advanced Materials, 2020, 32(6), 1906803. 16 Chen X, Zhou Z, Karahan H E, et al. Small Methods, 2018, 14(44), 1801929. 17 Yu Y, Xu W, Liu X, et al. Advanced Sustainable Systems, 2020, 4(9), 2000082. 18 Wang L, Huang W, Guo W, et al. Advanced Functional Materials, 2022, 32(1), 2108533. 19 Shen Y, Wang Q, Liu J, et al. Acta Physico-Chimica Sinica. , 2022, 38(11), 2204048. 20 Nie W, Cheng H, Sun Q, et al. Small Methods, 2023, 17, 2201572. 21 Tao F, Liu Y, Ren X, et al. Journal of Energy Chemistry, 2022, 66, 397. 22 Wang Y, Li A, Cheng C. Materials Today Chemistry, 2022, 26, 101057. 23 Fan X, Yang H, Wang X, et al. Advanced Materials Interfaces, 2021, 8(7), 2002184. 24 Li W, Wang K, Zhou M, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22059. 25 Chen S, Chen J, Liao X, et al. ACS Energy Letters, 2022, 7(11), 4028. 26 Qin H, Kuang W, Huang D, et al. Journal of Materials Chemistry A, 2022, 10(34), 17440.