Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21070057-12    https://doi.org/10.11896/cldb.21070057
  高分子与聚合物基复合材料 |
聚醚醚酮的表面改性策略综述
易荣1, 王法衡1, 刘永财1, 李涤尘2, 刘亚雄1
1 季华实验室新型增材制造研究院,广东 佛山 528200
2 西安交通大学机械工程学院,西安 710049
Review on the Surface Modification Strategy of Polyetheretherketone
YI Rong1, WANG Faheng1, LIU Yongcai1, LI Dichen2,LIU Yaxiong1
1 Institute of Additive Manufacturing, Ji Hua Laboratory, Foshan 528200, Guangdong, China
2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 8807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚醚醚酮(PEEK)具有良好的化学稳定性和优异的力学性能,有望替代传统的金属和陶瓷材料,成为骨科、整形以及牙科植入物的新选择,但目前PEEK材料的表面生物惰性在一定程度上限制了其临床应用。相比于将活性材料与PEEK进行混合来提高材料的骨整合能力,表面改性不仅能够保持PEEK基体材料本身良好的力学性能,而且可以有效改善材料表面与周围组织的相互作用,是提高其生物活性的一种行之有效的途径。本文将综述PEEK材料表面改性策略的最新研究进展,基于改性方法的原理以及过程的不同,分别从表面直接物理处理、表面物理沉积以及湿化学法三个方面对各自的技术原理和研究进展进行总结,并分析各类方法的优缺点。最后,系统分析各类表面改性策略有待解决的主要问题,并对今后的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易荣
王法衡
刘永财
李涤尘
刘亚雄
关键词:  聚醚醚酮  表面改性  生物活性  植入物    
Abstract: Polyetheretherketone (PEEK) has good chemical stability and excellent mechanical properties, which is expected to be a promising choice for orthopedic, plastic and dental implants by replacing the traditional metal and ceramic materials. However, the biological inertness of the PEEK surface greatly limits the clinical transformation. Compared with mixing the active material with PEEK to improve the osseointegration ability of the material, surface modification is an effective way to improve the biological activity of peek. It can not only maintain the excellent mechanical properties of the PEEK matrix material itself, but also effectively improve the interaction between the surface of the material and the surrounding tissues. In this paper, the latest research progress of PEEK material surface modification strategies will be reviewed. Based on the principle and process of modification methods, the technical principles and research progress of PEEK materials will be summarized from three aspects, including direct physical treatment of the surface, surface physical deposition and wet chemical method, and the advantages and disadvantages of each method will be analyzed. Finally, the main challenges concerning the clinical application of modified PEEK materials are discussed and the main future direction is concluded.
Key words:  polyetheretherketone    surface modification    biological activity    implants
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  O63  
基金资助: 广东省基础与应用基础研究基金(2020B1515130002);季华实验室自立项目;广东省重点研发计划(2018B090906001)
通讯作者:  刘亚雄,通信作者,现任季华实验室全职教授、博士研究生导师。长期从事増材制造及生物3D打印研究,研发的基于3D打印的个性化PEEK植入物制造工艺,于2018年在第四军医大学口腔医院完成国际首个基于3D打印的个性化PEEK全颞下颌关节重建临床案例。主持过863重点课题、自然科学基金以及国家重点研发计划课题等项目。曾获国家技术发明二等奖和高等院校技术发明一等奖等奖励。共发表论文160多篇,其中第一作者及通信作者53篇,以第一发明人获得授权发明专利28项。   
作者简介:  易荣,2016年6月在清华大学化学工程与技术专业获得博士学位。现为季华实验室助理研究员,主要研究方向为高分子材料的表面改性、医用生物材料的设计和开发。
引用本文:    
易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
YI Rong, WANG Faheng, LIU Yongcai, LI Dichen,LIU Yaxiong. Review on the Surface Modification Strategy of Polyetheretherketone. Materials Reports, 2023, 37(11): 21070057-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070057  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21070057
1 Knaus J, Schaffarczyk D, C?lfen H. Macromolecular Bioscience, 2020, 20(1), 1900239.
2 Rahmitasari F, Ishida Y, Kurahashi K, et al. Dentistry Journal, 2017, 5(4), 35.
3 Buck E, Li H, Cerruti M. Macromolecular Bioscience, 2020, 20(2), 1900271.
4 Novotna Z, Reznickova A, Rimpelova S, et al. RSC Advance, 2015, 5(52), 41428.
5 Poulsson A H C, Eglin D, Zeiter S, et al. Biomaterials, 2014, 35(12), 3717.
6 Lange B, Matschat R, Kipphardt H. Analytical and Bioanalytical Chemistry, 2007, 389(7), 2287.
7 Awaja F, Zhang S, James N, et al. Plasma Processes and Polymers, 2010, 7(12), 1010.
8 Gan K. Experimental study of surface modification on PEEK implant material. Master's Thesis, Jilin University, China, 2016(in Chinese).
甘抗. 聚醚醚酮植入物材料表面改性的实验研究. 硕士学位论文, 吉林大学, 2016.
9 Gan K, Liu H, Jiang L, et al. Dental Materials, 2016, 32(11), e263.
10 Chen M, Ouyang L, Lu T, et al. ACS Applied Materials & Interfaces, 2017, 9(20),16824.
11 Brennan W J, Feast W J, Munro H S, et al. Polymer, 1991, 32(8), 1527.
12 Jama C, Dessaux O, Goudmand P, et al. Surface & Interface Analysis, 2010, 18(11), 751.
13 Davidson M R, Mitchell S A, Bradley R H. Surface Science, 2005,581(2-3), 169.
14 Tang X, Huang K, Dai J, et al. Scientific Reports, 2017, 7(1), 1.
15 Shimizu T, Fujibayashi S, Yamaguchi S, et al. Acta Biomaterialia, 2016,35, 305.
16 Mahjoubi H, Buck E, Manimunda P, et al. Acta Biomaterialia, 2017,47, 149.
17 Torstrick F B, Safranski D L, Burkus J K, et al. Techniques in Orthopaedics, 2017, 32(3), 158.
18 Evans N T, Torstrick F B, Lee C S D, et al. Acta Biomaterialia, 2015,13, 159.
19 Yuan B, Chen Y, Lin H, et al. ACS Biomaterials Science & Engineering, 2016, 2(6), 977.
20 Cordero D, López-álvarez M, Rodríguez-Valencia C, et al. Biomedical Materials, 2013, 8(5), 55006.
21 Alamri S, Aguilar-Morales A I, Lasagni A F. European Polymer Journal, 2018,99, 27.
22 Zheng Y, Xiong C, Wang Z, et al. Applied Surface Science, 2015, 344, 79.
23 Mo S, Mehrjou B, Tang K, et al. Chemical Engineering Journal, 2020,392, 123736.
24 Walsh W R, Bertollo N, Christou C, et al. The Spine Journal, 2015, 15(5), 1041.
25 Stübinger S, Drechsler A, Bürki A, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2016, 104(6), 1182.
26 Yoon B J V, Xavier F, Walker B R, et al. The Spine Journal, 2016, 16(10), 1238.
27 Wu G M, Hsiao W D, Kung S F. Surface and Coatings Technology, 2009, 203(17-18), 2755.
28 Suska F, Omar O, Emanuelsson L, et al. Journal of Biomaterials Applications, 2014, 29(2), 234.
29 Oliveira T P, Silva S N, Sousa J A. International Journal of Fatigue, 2018,108, 1.
30 Gross K A, Ben-Nissan B, Walsh W R, et al. ASM International, DOI:10.31399/asm.cp.itsc1998p1133.
31 Sargin F, Erdogan G, Kanbur K, et al. Surface & Coating Technology, 2021,411,126965.
32 Chang C, Huang J, Xia J, et al. Ceramics International, 1999, 25(5), 479.
33 Kurtz S M. PEEK biomaterials handbooks, William Andrew, UK, 2019, pp. 147.
34 Wen J, Lu T, Wang X, et al. ACS Applied Materials & Interfaces, 2016, 8(21), 13197.
35 Wang X, Guo J, Wen J, et al. Materials & Design, 2021,202, 109526.
36 Yang Y, Tsou H, Chen Y, et al. Materials Science and Engineering: C, 2015,57, 58.
37 Liu X, Gan K, Liu H, et al. Dental Materials, 2017, 33(9), e348.
38 Boonyawan D, Waruriya P, Suttiat K. Surface & Coating Technology, 2016,306, 164.
39 Ozeki K, Masuzawa T, Aoki H. Materials Science and Engineering: C, 2017,72, 576.
40 Tsou H K, Hsieh P Y, Chung C J, et al. Surface Coating Technology, 2009, 204(6-7), 1121.
41 Chuang C J, Lin H I, He J L. Surface and Coatings Technology, 2007, 202(4-7), 1302.
42 Chung C, Tsou H, Chen H, et al. Surface Coating Technology, 2011, 205(21-22), 5035.
43 Tsou H K, Hsieh P Y, Chi M H, et al. Journal of Biomedical Materials Research Part A, 2012, 100(10), 2787.
44 Ostrowski N, Roy A, Kumta P N. ACS Biomaterials Science & Enginee-ring, 2016, 2(7), 1067.
45 Nabiyouni M, Brückner T, Zhou H, et al. Acta biomaterialia, 2018,66, 23.
46 Ren Y, Sikder P, Lin B, et al. Materials Science and Engineering: C, 2018,85, 107.
47 Sikder P, Grice C R, Lin B, et al. ACS Biomaterials Science & Enginee-ring, 2018, 4(8), 2767.
48 Lee J H, Jang H L, Lee K M, et al. Acta Biomaterialia, 2013, 9(4), 6177.
49 Lee J H, Jang H L, Lee K M, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105(3), 647.
50 Sanpo N, Tan M L, Cheang P, et al. Journal of Thermal Spray Technology, 2009, 18(1), 10.
51 Gardon M, Latorre A, Torrell M, et al. Materials Letters, 2013,106, 97.
52 Liu Y, Suo X K, Huang J, et al. Surface Technology, 2016,45(9), 25.
刘奕, 所新坤, 黄晶, 等. 表面技术, 2016,45(9), 25.
53 Noiset O, Schneider Y J, Marchand Brynaert J. Journal of Polymer Science Part A-Polymer Chemistry, 1997, 35(17), 3779.
54 Noiset O, Schneider Y J, Marchand-Brynaert J. Journal of Biomaterials Science-Polymer Edition, 2000, 11(7), 767.
55 Zheng Y, Xiong C, Zhang S, et al. Materials Science and Engineering: C, 2015, 55, 512.
56 Zheng Y, Liu L, Xiong C, et al. Materials Letters, 2018,213, 84.
57 Diez-Pascual A M, Martinez G, Gomez M A. Macromolecules, 2009, 42(18), 6885.
58 Huang R Y M, Shao P, Burns C M, et al. Journal of Applied Polymer Science, 2001, 82(11), 2651.
59 Zhang W, Zheng H, Zhang C, et al. Ionics, 2017, 23(8), 2103.
60 Zhao Y, Wong H M, Wang W, et al. Biomaterials, 2013, 34(37), 9264.
61 Ouyang L, Zhao Y, Jin G, et al. Biomaterials, 2016,83, 115.
62 Cheng Q, Yuan B, Chen X, et al. Journal of Materials Chemistry B, 2019, 7(37), 5713.
63 Meng Z, Liu Y, Wu D. Inhalation Toxicology, 2005, 17(6), 303.
64 Ouyang L, Deng Y, Yang L, et al. Macromolecular Bioscience, 2018, 18(6), 1800036.
65 Mahjoubi H, Kinsella J M, Murshed M, et al. ACS Applied Materials & Interfaces, 2014, 6(13), 9975.
66 Mahjoubi H, Buck E, Manimunda P, et al. Acta Biomaterialia, 2017, 47, 149.
67 Lemieux M, Minko S, Usov D, et al. Langmuir, 2003, 19(15), 6126.
68 Bialk M, Prucker O, Rühe J. Colloids and Surfaces A, 2002,198, 543.
69 Xu F J, Neoh K G, Kang E T. Progress in Polymer Science, 2009, 34(8), 719.
70 Wang Y, Bai Y, Zhong W, et al. Macromolecules, 2007, 40(3), 756.
71 Ma H, Davis R H, Bowman C N. Macromolecules, 2000, 33(2), 331.
72 Kyomoto M, Ishihara K. ACS Applied Materials & Interfaces, 2009, 1(3), 537.
73 Kyomoto M, Moro T, Yamane S, et al. Reconstructive Review, 2014, 4(3), 36.
74 Kyomoto M, Moro T, Yamane S, et al. Biomaterials, 2013, 34(32), 7829.
75 Shiojima T, Inoue Y, Kyomoto M, et al. Acta Biomaterialia, 2016,40, 38.
76 Kyomoto M, Moro T, Takatori Y, et al. Biomaterials, 2010, 31(6), 1017.
77 Zheng Y, Liu L, Ma Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(31), 10403.
78 Zheng Y, Liu L, Xiao L, et al. Colloids and Surfaces B-Biointerfaces, 2019,173, 591.
79 Flejszar M, Chmielarz P. Materials, 2020, 13(4), 999.
80 Zaborniak I, Chmielarz P. Macromolecular Chemistry and Physics, 2019, 220(17), 1900285.
81 Yameen B, Alvarez M, Azzaroni O, et al. Langmuir, 2009, 25(11), 6214.
82 Fristrup C J, Jankova K, Hvilsted S. Polymer Chemistry, 2010, 1(10), 1696.
83 Ku S H, Lee J S, Park C B. Langmuir, 2010, 26(19), 15104.
84 Wang H, Lin C, Zhang X, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7615.
85 Han G, Liu S, Pan Z, et al. Carbohydrate Polymers, 2020,229, 115517.
86 Luo R, Tang L, Zhong S, et al. ACS Applied Materials & Interfaces, 2013, 5(5), 1704.
87 Wang H, Lin C, Zhang X, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7615.
88 Liu Y, Ai K, Lu L. Chemical Reviews, 2014, 114(9), 5057.
89 Lee H, Rho J, Messersmith P B. Advanced Materials, 2009, 21(4), 431.
90 Xu A, Zhou L, Deng Y, et al. Journal of Materials Chemistry B, 2016, 4(10), 1878.
91 Kwon G, Kim H, Gupta K C, et al. Macromolecular Research, 2018, 26(2), 128.
92 Meng X, Zhang J, Chen J, et al. Journal of Materials Chemistry B, 2020, 8(44), 10190.
93 Zhu Y, Cao Z, Peng Y, et al. ACS Applied Materials & Interfaces, 2019, 11(31), 27503.
94 Xu X, Li Y, Wang L, et al. Biomaterials, 2019,212, 98.
95 Sun Z, Ouyang L, Ma X, et al. Colloids and Surfaces B-Biointerfaces, 2018,171, 668.
96 Yuan X, Ouyang L, Luo Y, et al. Acta Biomaterialia, 2019,86, 323.
97 Gao C, Wang Z, Jiao Z, et al. Materials & Design, 2021,205, 109733.
98 Deng Y, Gao X, Shi X L, et al. Chemistry of Materials, 2020, 32(5), 2180.
[1] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[2] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[3] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[4] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[5] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[6] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[7] 岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
[8] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[9] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[10] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[11] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[12] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[13] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
[14] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[15] 胡方, 王健, 仇越秀, 郭创洲, 刘明东. 生物活性玻璃不同时间体外矿化对创伤修复的影响[J]. 材料导报, 2020, 34(Z2): 142-146.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed