Review on the Surface Modification Strategy of Polyetheretherketone
YI Rong1, WANG Faheng1, LIU Yongcai1, LI Dichen2,LIU Yaxiong1
1 Institute of Additive Manufacturing, Ji Hua Laboratory, Foshan 528200, Guangdong, China 2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract: Polyetheretherketone (PEEK) has good chemical stability and excellent mechanical properties, which is expected to be a promising choice for orthopedic, plastic and dental implants by replacing the traditional metal and ceramic materials. However, the biological inertness of the PEEK surface greatly limits the clinical transformation. Compared with mixing the active material with PEEK to improve the osseointegration ability of the material, surface modification is an effective way to improve the biological activity of peek. It can not only maintain the excellent mechanical properties of the PEEK matrix material itself, but also effectively improve the interaction between the surface of the material and the surrounding tissues. In this paper, the latest research progress of PEEK material surface modification strategies will be reviewed. Based on the principle and process of modification methods, the technical principles and research progress of PEEK materials will be summarized from three aspects, including direct physical treatment of the surface, surface physical deposition and wet chemical method, and the advantages and disadvantages of each method will be analyzed. Finally, the main challenges concerning the clinical application of modified PEEK materials are discussed and the main future direction is concluded.
易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
YI Rong, WANG Faheng, LIU Yongcai, LI Dichen,LIU Yaxiong. Review on the Surface Modification Strategy of Polyetheretherketone. Materials Reports, 2023, 37(11): 21070057-12.
1 Knaus J, Schaffarczyk D, C?lfen H. Macromolecular Bioscience, 2020, 20(1), 1900239. 2 Rahmitasari F, Ishida Y, Kurahashi K, et al. Dentistry Journal, 2017, 5(4), 35. 3 Buck E, Li H, Cerruti M. Macromolecular Bioscience, 2020, 20(2), 1900271. 4 Novotna Z, Reznickova A, Rimpelova S, et al. RSC Advance, 2015, 5(52), 41428. 5 Poulsson A H C, Eglin D, Zeiter S, et al. Biomaterials, 2014, 35(12), 3717. 6 Lange B, Matschat R, Kipphardt H. Analytical and Bioanalytical Chemistry, 2007, 389(7), 2287. 7 Awaja F, Zhang S, James N, et al. Plasma Processes and Polymers, 2010, 7(12), 1010. 8 Gan K. Experimental study of surface modification on PEEK implant material. Master's Thesis, Jilin University, China, 2016(in Chinese). 甘抗. 聚醚醚酮植入物材料表面改性的实验研究. 硕士学位论文, 吉林大学, 2016. 9 Gan K, Liu H, Jiang L, et al. Dental Materials, 2016, 32(11), e263. 10 Chen M, Ouyang L, Lu T, et al. ACS Applied Materials & Interfaces, 2017, 9(20),16824. 11 Brennan W J, Feast W J, Munro H S, et al. Polymer, 1991, 32(8), 1527. 12 Jama C, Dessaux O, Goudmand P, et al. Surface & Interface Analysis, 2010, 18(11), 751. 13 Davidson M R, Mitchell S A, Bradley R H. Surface Science, 2005,581(2-3), 169. 14 Tang X, Huang K, Dai J, et al. Scientific Reports, 2017, 7(1), 1. 15 Shimizu T, Fujibayashi S, Yamaguchi S, et al. Acta Biomaterialia, 2016,35, 305. 16 Mahjoubi H, Buck E, Manimunda P, et al. Acta Biomaterialia, 2017,47, 149. 17 Torstrick F B, Safranski D L, Burkus J K, et al. Techniques in Orthopaedics, 2017, 32(3), 158. 18 Evans N T, Torstrick F B, Lee C S D, et al. Acta Biomaterialia, 2015,13, 159. 19 Yuan B, Chen Y, Lin H, et al. ACS Biomaterials Science & Engineering, 2016, 2(6), 977. 20 Cordero D, López-álvarez M, Rodríguez-Valencia C, et al. Biomedical Materials, 2013, 8(5), 55006. 21 Alamri S, Aguilar-Morales A I, Lasagni A F. European Polymer Journal, 2018,99, 27. 22 Zheng Y, Xiong C, Wang Z, et al. Applied Surface Science, 2015, 344, 79. 23 Mo S, Mehrjou B, Tang K, et al. Chemical Engineering Journal, 2020,392, 123736. 24 Walsh W R, Bertollo N, Christou C, et al. The Spine Journal, 2015, 15(5), 1041. 25 Stübinger S, Drechsler A, Bürki A, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2016, 104(6), 1182. 26 Yoon B J V, Xavier F, Walker B R, et al. The Spine Journal, 2016, 16(10), 1238. 27 Wu G M, Hsiao W D, Kung S F. Surface and Coatings Technology, 2009, 203(17-18), 2755. 28 Suska F, Omar O, Emanuelsson L, et al. Journal of Biomaterials Applications, 2014, 29(2), 234. 29 Oliveira T P, Silva S N, Sousa J A. International Journal of Fatigue, 2018,108, 1. 30 Gross K A, Ben-Nissan B, Walsh W R, et al. ASM International, DOI:10.31399/asm.cp.itsc1998p1133. 31 Sargin F, Erdogan G, Kanbur K, et al. Surface & Coating Technology, 2021,411,126965. 32 Chang C, Huang J, Xia J, et al. Ceramics International, 1999, 25(5), 479. 33 Kurtz S M. PEEK biomaterials handbooks, William Andrew, UK, 2019, pp. 147. 34 Wen J, Lu T, Wang X, et al. ACS Applied Materials & Interfaces, 2016, 8(21), 13197. 35 Wang X, Guo J, Wen J, et al. Materials & Design, 2021,202, 109526. 36 Yang Y, Tsou H, Chen Y, et al. Materials Science and Engineering: C, 2015,57, 58. 37 Liu X, Gan K, Liu H, et al. Dental Materials, 2017, 33(9), e348. 38 Boonyawan D, Waruriya P, Suttiat K. Surface & Coating Technology, 2016,306, 164. 39 Ozeki K, Masuzawa T, Aoki H. Materials Science and Engineering: C, 2017,72, 576. 40 Tsou H K, Hsieh P Y, Chung C J, et al. Surface Coating Technology, 2009, 204(6-7), 1121. 41 Chuang C J, Lin H I, He J L. Surface and Coatings Technology, 2007, 202(4-7), 1302. 42 Chung C, Tsou H, Chen H, et al. Surface Coating Technology, 2011, 205(21-22), 5035. 43 Tsou H K, Hsieh P Y, Chi M H, et al. Journal of Biomedical Materials Research Part A, 2012, 100(10), 2787. 44 Ostrowski N, Roy A, Kumta P N. ACS Biomaterials Science & Enginee-ring, 2016, 2(7), 1067. 45 Nabiyouni M, Brückner T, Zhou H, et al. Acta biomaterialia, 2018,66, 23. 46 Ren Y, Sikder P, Lin B, et al. Materials Science and Engineering: C, 2018,85, 107. 47 Sikder P, Grice C R, Lin B, et al. ACS Biomaterials Science & Enginee-ring, 2018, 4(8), 2767. 48 Lee J H, Jang H L, Lee K M, et al. Acta Biomaterialia, 2013, 9(4), 6177. 49 Lee J H, Jang H L, Lee K M, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105(3), 647. 50 Sanpo N, Tan M L, Cheang P, et al. Journal of Thermal Spray Technology, 2009, 18(1), 10. 51 Gardon M, Latorre A, Torrell M, et al. Materials Letters, 2013,106, 97. 52 Liu Y, Suo X K, Huang J, et al. Surface Technology, 2016,45(9), 25. 刘奕, 所新坤, 黄晶, 等. 表面技术, 2016,45(9), 25. 53 Noiset O, Schneider Y J, Marchand Brynaert J. Journal of Polymer Science Part A-Polymer Chemistry, 1997, 35(17), 3779. 54 Noiset O, Schneider Y J, Marchand-Brynaert J. Journal of Biomaterials Science-Polymer Edition, 2000, 11(7), 767. 55 Zheng Y, Xiong C, Zhang S, et al. Materials Science and Engineering: C, 2015, 55, 512. 56 Zheng Y, Liu L, Xiong C, et al. Materials Letters, 2018,213, 84. 57 Diez-Pascual A M, Martinez G, Gomez M A. Macromolecules, 2009, 42(18), 6885. 58 Huang R Y M, Shao P, Burns C M, et al. Journal of Applied Polymer Science, 2001, 82(11), 2651. 59 Zhang W, Zheng H, Zhang C, et al. Ionics, 2017, 23(8), 2103. 60 Zhao Y, Wong H M, Wang W, et al. Biomaterials, 2013, 34(37), 9264. 61 Ouyang L, Zhao Y, Jin G, et al. Biomaterials, 2016,83, 115. 62 Cheng Q, Yuan B, Chen X, et al. Journal of Materials Chemistry B, 2019, 7(37), 5713. 63 Meng Z, Liu Y, Wu D. Inhalation Toxicology, 2005, 17(6), 303. 64 Ouyang L, Deng Y, Yang L, et al. Macromolecular Bioscience, 2018, 18(6), 1800036. 65 Mahjoubi H, Kinsella J M, Murshed M, et al. ACS Applied Materials & Interfaces, 2014, 6(13), 9975. 66 Mahjoubi H, Buck E, Manimunda P, et al. Acta Biomaterialia, 2017, 47, 149. 67 Lemieux M, Minko S, Usov D, et al. Langmuir, 2003, 19(15), 6126. 68 Bialk M, Prucker O, Rühe J. Colloids and Surfaces A, 2002,198, 543. 69 Xu F J, Neoh K G, Kang E T. Progress in Polymer Science, 2009, 34(8), 719. 70 Wang Y, Bai Y, Zhong W, et al. Macromolecules, 2007, 40(3), 756. 71 Ma H, Davis R H, Bowman C N. Macromolecules, 2000, 33(2), 331. 72 Kyomoto M, Ishihara K. ACS Applied Materials & Interfaces, 2009, 1(3), 537. 73 Kyomoto M, Moro T, Yamane S, et al. Reconstructive Review, 2014, 4(3), 36. 74 Kyomoto M, Moro T, Yamane S, et al. Biomaterials, 2013, 34(32), 7829. 75 Shiojima T, Inoue Y, Kyomoto M, et al. Acta Biomaterialia, 2016,40, 38. 76 Kyomoto M, Moro T, Takatori Y, et al. Biomaterials, 2010, 31(6), 1017. 77 Zheng Y, Liu L, Ma Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(31), 10403. 78 Zheng Y, Liu L, Xiao L, et al. Colloids and Surfaces B-Biointerfaces, 2019,173, 591. 79 Flejszar M, Chmielarz P. Materials, 2020, 13(4), 999. 80 Zaborniak I, Chmielarz P. Macromolecular Chemistry and Physics, 2019, 220(17), 1900285. 81 Yameen B, Alvarez M, Azzaroni O, et al. Langmuir, 2009, 25(11), 6214. 82 Fristrup C J, Jankova K, Hvilsted S. Polymer Chemistry, 2010, 1(10), 1696. 83 Ku S H, Lee J S, Park C B. Langmuir, 2010, 26(19), 15104. 84 Wang H, Lin C, Zhang X, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7615. 85 Han G, Liu S, Pan Z, et al. Carbohydrate Polymers, 2020,229, 115517. 86 Luo R, Tang L, Zhong S, et al. ACS Applied Materials & Interfaces, 2013, 5(5), 1704. 87 Wang H, Lin C, Zhang X, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7615. 88 Liu Y, Ai K, Lu L. Chemical Reviews, 2014, 114(9), 5057. 89 Lee H, Rho J, Messersmith P B. Advanced Materials, 2009, 21(4), 431. 90 Xu A, Zhou L, Deng Y, et al. Journal of Materials Chemistry B, 2016, 4(10), 1878. 91 Kwon G, Kim H, Gupta K C, et al. Macromolecular Research, 2018, 26(2), 128. 92 Meng X, Zhang J, Chen J, et al. Journal of Materials Chemistry B, 2020, 8(44), 10190. 93 Zhu Y, Cao Z, Peng Y, et al. ACS Applied Materials & Interfaces, 2019, 11(31), 27503. 94 Xu X, Li Y, Wang L, et al. Biomaterials, 2019,212, 98. 95 Sun Z, Ouyang L, Ma X, et al. Colloids and Surfaces B-Biointerfaces, 2018,171, 668. 96 Yuan X, Ouyang L, Luo Y, et al. Acta Biomaterialia, 2019,86, 323. 97 Gao C, Wang Z, Jiao Z, et al. Materials & Design, 2021,205, 109733. 98 Deng Y, Gao X, Shi X L, et al. Chemistry of Materials, 2020, 32(5), 2180.