Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21070166-7    https://doi.org/10.11896/cldb.21070166
  金属与金属基复合材料 |
铺层方式对CFRP-铝合金单搭接胶接接头低速冲击损伤及剩余拉伸性能的影响
邹田春, 符记, 巨乐章, 李晔
中国民航大学安全科学与工程学院,天津 300300
Effect of Stacking Sequence on Low Velocity Impact Damage and Residual Tensile Properties of CFRP-Aluminum Single-lap Adhesive Joints
ZOU Tianchun, FU Ji, JU Yuezhang, LI Ye
School of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300,China
下载:  全 文 ( PDF ) ( 12049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热压罐成型方法制备铺层方式为[+45/-45]4s、[0/+45/-45/90]2s和[0/90]4s的碳纤维复合材料层合板,通过胶黏剂与铝合金板进行粘接获得异质材料单搭接胶接接头。利用落锤冲击试验机和万能电子试验机分别对三种接头进行低速冲击与冲击后静态拉伸测试,获得接头接触力-时间曲线和拉伸强度。通过CT扫描技术和数字图像相关(DIC)方法表征接头冲击损伤模式及表面应变演化过程,研究了铺层方式对接头抗冲击性能、冲击损伤模式以及剩余拉伸性能的影响。结果表明,复合材料铺层方式为[+45/-45]4s时,接头在冲击载荷作用下具有较高的抗冲击性能,但胶层界面脱粘损伤较为严重。与胶层界面脱粘相比,接头剩余强度对层合板分层损伤更为敏感。相较于[+45/-45]4s,[0/+45/-45/90]2s和[0/90]4s铺层方式接头的胶层界面脱粘范围与冲击后失效载荷退化程度较小,同时接头冲击后拉伸载荷主要集中于临近胶层的0°铺层且失效模式较为复杂。此外,在冲击载荷作用下,层合板中的±45°铺层变形程度较小具有较强的抗剪切能力,能够有效减轻层合板的冲击损伤,提高接头的抗冲击性能;0°铺层变形程度较大且具有较高的抗拉强度,能够一定程度上减轻胶层与铝合金表面脱粘损伤并提高接头拉伸强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹田春
符记
巨乐章
李晔
关键词:  异质材料胶接  铺层方式  单搭接接头  低速冲击  拉伸性能  失效形貌    
Abstract: The method of forming for autoclave was used to prepare carbon fiber reinforced plastics (CFRP) laminates with [+45/-45]4s, [0/+45/-45/90]2s and [0/90]4s stacking sequences, and the single-lap adhesive joints with heterogene-ous materials were obtained by bonding the laminates and aluminum alloy plates using adhesive. The contact force-time curves and tensile strength of three kinds of joints under low-velocity impact testing and tension after impact (TAI) testing were obtained by drop hammer impact testing machine and universal electronic testing machine, respectively. The impact damage mode and joint surface strain field were characterized by X-ray computed tomography (X-ray CT) technique and digital image correlation (DIC) method, respectively. The effects of stacking sequence on the impact resistance, impact damage mode and joint residual tensile properties were studied. The results show that the joint with the composite adherend whose stacking sequence is [+45/-45]4s has high impact resistance under impact load, but the interface debonding damage of adhesive layer is more serious. The joint residual strength is more sensitive to delamination damage than the adhesive layer interface debonding. Compared with [+45/-45]4s, the joints with the laminate as adherends whose stacking sequences are [0/+45/-45/90]2s and [0/90]4s, whose debonding range of the adhesive layer interface and the degradation degree of tensile strength after impact are smaller. At the same time, the tensile load of the joint after impact is mainly concentrated in the 0° ply near the adhesive layer and the failure mode is relatively complex. In addition, under the impact load, the 45° plies in the laminate have smaller deformation and higher shear resistance, which can effectively reduce the laminate impact damage and improve the joint impact resistance. The 0° plies have large deformation and high tensile strength, which can reduce the debonding damage between the adhesive layer and aluminum surface to a certain extent and improve the joint tensile failure load.
Key words:  heterogeneous materials bonding    stacking sequence    single-lap joint    low-velocity impact    tensile properties    failure morphology
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52071069)
通讯作者:  邹田春,通信作者,中国民航大学安全科学与工程学院副教授、硕士研究生导师。1999年北京航空航天大学材料科学与工程专业本科毕业,2002年天津核工业理化工程研究院流体力学专业硕士毕业,2007年天津大学材料科学与工程专业博士毕业。目前主要从事复合材料、增材制造等方面的研究工作。发表论文100余篇,包括Materials Letters、Engineering Failure Analysis、《航空学报》《复合材料学报》等。   
引用本文:    
邹田春, 符记, 巨乐章, 李晔. 铺层方式对CFRP-铝合金单搭接胶接接头低速冲击损伤及剩余拉伸性能的影响[J]. 材料导报, 2023, 37(11): 21070166-7.
ZOU Tianchun, FU Ji, JU Yuezhang, LI Ye. Effect of Stacking Sequence on Low Velocity Impact Damage and Residual Tensile Properties of CFRP-Aluminum Single-lap Adhesive Joints. Materials Reports, 2023, 37(11): 21070166-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070166  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21070166
1 Zhao L L, Gong Y, Zhang J Y. Acta Aeronautica et Astronautica Sinica, 2019, 40(1), 171 (in Chinese).
赵丽滨, 龚愉, 张建宇. 航空学报, 2019, 40(1), 171.
2 Soutis C. Progress in Aerospace Science, 2005, 41(2), 143.
3 Kgoete F M, Popoola A P I, Fayomi O S I. Journal of Physics Conference Series, 2019,1378, 32049.
4 Feng Z Y,Zou T C. Qualification certification of composite aircraft structures, Aviation Industry Press, China, 2012, pp.395 (in Chinese).
冯振宇, 邹田春. 复合材料飞机结构合格审定, 航空工业出版社, 2012, pp.395.
5 Zhao L B, Xu J F. Analysis method of advanced composite connection structure, Beihang University Press, 2015, pp. 183 (in Chinese).
赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法, 北京航空航天大学出版社, 2015, pp.183.
6 Ebnesajjad S, Landrock A H. Adhesives technology handbook, William Andrew, 2014, pp. 3.
7 Cui J, Sun T, Geng H, et al. The International Journal of Advanced Manufacturing Technology, 2018, 98(5-8), 1081.
8 Ma Y Y, Zhang K F, Yang Z J, et al. Advanced Materials Research, 2011,181, 814.
9 You M, Li M B, Yuan Y L, et al. International Journal of Adhesion and Adhesives, 2020,100, 102620.
10 Liu B, Han Q, Zhong X, et al. Composites Part B: Engineering, 2019,158, 339.
11 Kadioglu F, Adams R D. International Journal of Adhesion & Adhesives, 2015,56, 73.
12 Li Y B, Yang Y, Li J, et al. International Journal of Impact Engineering, 2020,140, 103541.
13 Liu B,Xu F,Juchi Z J, et al. Journal of Solid Rocket Technology, 2015, 38(6), 870 (in Chinese).
刘斌, 徐绯, 菊池正纪, 等. 固体火箭技术, 2015, 38(6), 870.
14 Sayman O, Arikan V, Dogan A, et al. Composites Part B: Engineering, 2013,54, 409.
15 Nie H C, Xu J F, Guan Z D, et al. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (11), 2306 (in Chinese).
聂恒昌, 徐吉峰, 关志东, 等. 北京航空航天大学学报, 2016, 42 (11), 2306.
16 Aga Z A, Woldesenbet E. Journal of Adhesion Science and Technology, 2007, 21(1), 21.
17 Callioglu H, Ergun E. Journal of Mechanics, 2015, 31(4), 433.
18 Farrow I R, Potter K, Fisher A, et al. Advanced Composites letters, 2000, 9(6), 397.
19 Harman A B, Rider A N. Composites Part A: Applied Science and Manufacturing, 2011, 42(10), 1321.
20 Wang S, Lai J M, Ruan J Q, et al. Materials Reports, 2021, 35(2), 2178 (in Chinese).
王森, 赖家美, 阮金琦, 等. 材料导报, 2021, 35(2), 2178.
21 Liao B, Wang P, Zheng J, et al. Composites Part A: Applied Science and Manufacturing, 2020,136,105964.
22 Zhou J, Liao B, Shi Y, et al. Composites Part B: Engineering, 2019,161, 300.
23 Dehaghani R C, Cronin D, Montesano J. International Journal of Adhesion and Adhesives, 2021,105,102776.
24 Liu X L, Shao X, Li Q, et al. Composites Part B: Engineering, 2019,172, 339.
25 Shen G L, Hu G K. Mechanics of composite materials, Tsinghua University Press, 1996, pp. 38(in Chinese).
沈观林, 胡更开.复合材料力学, 清华大学出版社, 1996, pp. 38.
26 Kumar R L V, Bhat M R, Murthy C R L. International Journal of Adhesion and Adhesives, 2013,42, 60.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
[3] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[4] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[5] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[6] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[7] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[8] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[9] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[10] 崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
[11] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[12] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[13] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(Z2): 598-602.
[14] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[15] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed