Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21050214-7    https://doi.org/10.11896/cldb.21050214
  金属与金属基复合材料 |
基于金属骨架的复合材料混合结构拉伸性能与失效机理分析
武多多1,2, 郑会龙1,*, 康振亚1, 习常清1, 张谭1
1 中国科学院工程热物理研究所,北京 100190
2 中国科学院大学航空宇航学院,北京 100049
Tensile Properties and Failure Mechanisms Analysis of Composite Hybrid Structures Based on Metal Skeletons
WU Duoduo1,2, ZHENG Huilong1,*, KANG Zhenya1, XI Changqing1, ZHANG Tan1
1 Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 7251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了一种新型混合结构,即结合金属增材制造、复合材料机织与缝合等工艺,将金属骨架与机织复合材料完成法向缝合后共固化成形,规避了传统混合方法中分层失效等问题,实现了宏观尺度上金属与复合材料的灵活成形与稳定连接。采用非接触式图像测量分析技术研究了此类新型混合结构在准静态拉伸载荷下的力学性能与失效模式。结果表明:分层裂纹源于异质材料层间的应变差异及剪切应力,而缝合纤维抑制分层界面的裂纹扩展,提高断裂韧性;混合结构的抗拉强度随着结构厚度增加而降低,仅改变金属开孔形状对混合结构的整体力学性能无明显影响;混合结构受多种失效模式影响,主要包括经纱断裂、基体失效、缝合纤维断裂拔出及金属塑性失效等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武多多
郑会龙
康振亚
习常清
张谭
关键词:  金属增材制造  机织复合材料  混合结构  拉伸性能  失效机理    
Abstract: Anew hybrid structure is designed which combines metal additive manufacturing, composite weaving and composite stitching processes. After the metal part and woven composite are fixed by normal stitching, the sample is finally formed by the co-curing process. This structure avoids the problems associated with conventional hybrid methods such as delamination failure, and enables flexible forming and stable joining of metal and composite materials on a macroscopic scale. The mechanical properties and failure modes of this new hybrid structure under quasistatic tensile loading are investigated by non-contact image measurement and analysis techniques. The results show that: the delamination cracks originate from the strain difference and shear stress between the different material layers, while the stitching fibres can inhibit the crack extension at the delamination interface and improve the fracture toughness; the tensile strength of the hybrid structure decreases with the thickness of the structure increasing, and only changing the pre-determined hole shape has no significant effect on the general mechanical properties of the hybrid structure; the hybrid structure is affected by various failure modes, mainly involving warp fracture, matrix failure, fracture and pull-out of the suture fibres, plastic failure of the metal, etc.
Key words:  metal additive manufacturing    woven composite    hybrid structure    tensile property    failure mechanism
发布日期:  2022-10-26
ZTFLH:  TB333  
基金资助: 中国科学院工程热物理研究所创新引导基金(Y85402BZ11)
通讯作者:  *zhenghuilong@iet.cn   
作者简介:  武多多,2019年6月毕业于清华大学,获得工学学士学位。现为中国科学院大学航空宇航学院硕士研究生。目前主要研究领域为复合材料和增材制造。
郑会龙,中国科学院工程热物理研究所研究员。1996年7月在沈阳航空工业学院获得学士学位,2019年6月在北京工业大学获得博士学位。长期从事类皮肤传感智能集成技术、精密制造工艺技术等研究工作,先后主持各类国防预研项目、科技重大项目20余项。
引用本文:    
武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
WU Duoduo, ZHENG Huilong, KANG Zhenya, XI Changqing, ZHANG Tan. Tensile Properties and Failure Mechanisms Analysis of Composite Hybrid Structures Based on Metal Skeletons. Materials Reports, 2022, 36(20): 21050214-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050214  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21050214
1 Gao Y, Li J L. Journal of Donghua University (English Edition), 2015, 32(3), 117.
2 Du S Y. Act Materia Composita Sinica, 2007, 24(1), 12(in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 12.
3 Ma X Q, Su Z T. Journal of Materials Engineering, 2020, 48(10), 48(in Chinese).
马绪强, 苏正涛. 材料工程, 2020, 48(10), 48.
4 Lehmhus D, Hehl A V, Hausmann J, et al. Advanced Engineering Materials, 2019, 21(6), 1900056.
5 Kazemi M E, Shanmugam L, Yang L, et al. Composites Part A: Applied Science and Manufacturing, 2019, 128, 105679.
6 Zou T C, Qin J X, Li L H, et al. Materials Reports B:Research Papers, 2020, 34(10), 147(in Chinese).
邹田春,秦嘉徐,李龙辉,等. 材料导报:研究篇,2020,34(10),147.
7 Qiao H T, Liang B, Zhang J Y, et al. Journal of Materials Engineering, 2018, 46(12), 38(in Chinese).
乔海涛, 梁滨, 张军营, 等. 材料工程,2018, 46(12), 38.
8 Amancio S T, Bueno C, Dos Santos J F, et al. Materials Science & Engineering A, 2011, 528(10-11), 3841.
9 Pramanik A, Basak A K, Dong Y, et al. Composites Part A Applied Science & Manufacturing, 2017, 101, 1.
10 Mariam M, Afendi M, Abdul Majid M S, et al. Composite Structures, 2018, 200, 647.
11 Meschut G, Hahn O, Janzen V, et al. Welding in the World, 2014, 58(1), 65.
12 Zitoune R, Collombet F. Composites Part A: Applied Science and Manufacturing, 2007, 38(3), 858.
13 Feistauer E E, Dos Santos J F, Amancio-Filho S T, et al. Polymer Engineering and Science,2019, 59(4), 661.
14 Xiong W, Blackman B, Dear J P, et al. Composite Structures, 2015,134, 587.
15 Li N, Chen P H, Liu X Y, et al. Composites Science & Technology, 2015, 117, 334.
16 Reisgen U, Schiebahn A, Lotte J, et al. Journal of Materials Processing Technology, 2020, 282(1), 116674.
17 Abe H, Chung J C, Mori T, et al. Composites Part B: Engineering, 2019, 172, 26.
18 Parkes P N, Butler R, Meyer J, et al. Composite Structures, 2014, 118(1), 250.
19 Ramaswamy K, O’higgins R M, Corbett M C, et al. Composite Structures, 2020, 253, 112769.
20 Lu Y R, Hua Y, Chen X H, et al. Journal of Materials Engineering, 2020, 450(11), 166(in Chinese).
卢轶榕, 华勇, 陈秀华, 等. 材料工程, 2020, 450(11), 166.
21 Zhou Y D, Sun Y C, Huang T L, et al. Symmetry in Applied Continuous Mechanics, 2019, 11(10), 1292.
22 Bigaud J, Aboura Z, Martins A T, et al. Composite Structures, 2017, 184, 249.
23 Ghasemnejad H, Argentiero Y,Tez T A, et al. Materials and Design, 2013, 51(10), 552.
24 Ma Y Q, Qi L H, Zheng W Q, et al. Transactions of Nonferrous Metals Society of China (English Edition), 2013, 23(7), 1915.
25 Bai R X, Bao S H, Lei Z K, et al. International Journal of Adhesion and Adhesives, 2018, 81, 48.
26 Sharma A P, Khan S H, Parameswaran V, et al. Journal of Composite Materials, 2020, 53(11), 1489.
27 Isart N, Elsaid B, Ivanov D, et al. Composite Structures,2015,132,1219.
28 Wang C Z, Lu Y, He W T, et al. Thin-Walled Structures, 2020, 154(7), 106866.
29 Chen X C. Interlaminar fracture toughness and impact response of a novel fiber metal laminate, Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese).
陈星弛. 新型金属纤维层板层间断裂韧性及冲击响应. 硕士学位论文, 大连理工大学, 2020.
[1] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[2] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[3] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[4] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[5] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[6] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[7] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[8] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[9] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[10] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[11] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[12] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[13] 谢锐, 吕铮, 徐长伟, 刘春明. 钛元素对9Cr氧化物弥散强化钢微观组织和拉伸性能的影响[J]. 材料导报, 2020, 34(22): 22111-22117.
[14] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[15] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed