Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20090232-7    https://doi.org/10.11896/cldb.20090232
  无机非金属及其复合材料 |
混凝土气泡调控型表面活性剂的研究进展
乔敏1,2,*, 单广程1, 高南箫1, 陈健1,2, 吴井志2, 朱伯淞1, 冉千平1,3
1 江苏苏博特新材料股份有限公司,高性能土木工程材料国家重点实验室,南京 211103
2 博特新材料泰州有限公司,江苏 泰州 225474
3 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Research Progress of Concrete Air Controlled Surfactants
QIAO Min1,2,*, SHAN Guangcheng1, GAO Nanxiao1, CHEN Jian1,2, WU Jingzhi2, ZHU Bosong1, RAN Qianping1,3
1 State Key Laboratory of High Performance Civil Engineering Materials,Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
2 Bote New Materials Taizhou Co., Ltd., Taizhou 225474, Jiangsu, China
3 Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5346KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国基础设施建设的大力发展,目前在建的高速公路、铁路、大型桥梁、隧道、大型水利水电工程、高层建筑、地下工程的数量均居世界首位。这些重大工程的发展无一不与混凝土材料息息相关,因此对混凝土的耐久性提出了更高的要求。如何提高现代工程混凝土的耐久性、延长混凝土构筑物的安全服役年限是混凝土研究面临的重大问题。
混凝土气孔结构直接影响混凝土的抗冻融、抗介质渗透以及结构稳定等耐久性性能,在混凝土搅拌过程中掺入气泡调控型表面活性剂,可以在新拌混凝土中引入适量细小、均匀、密闭的气泡,大大改善拌合物的和易性,从而提高混凝土的抗冻、抗渗、抗碳化等耐久性。因此,混凝土气泡调控型表面活性剂的研究和生产逐渐成为外加剂领域的热点。
本文根据表面活性剂的定义、类型和特点,分别从表面活性剂的作用机理及其在混凝土中的失效原因等方面介绍了混凝土气泡调控表面活性剂的最新研究成果,主要讨论了新型双子表面活性剂在混凝土中的应用和表面活性剂的分子自组装行为及泡沫行为的作用机理,并分析了混凝土中的盐效应及吸附效应等对表面活性剂的影响,以期为将来研发性能优良的混凝土气泡调控型表面活性剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔敏
单广程
高南箫
陈健
吴井志
朱伯淞
冉千平
关键词:  表面活性剂  分类  气泡  作用机理  失效机理    
Abstract: With the rapid development of our country's infrastructure construction, the number of highways, railways, large bridges, tunnels, large water conservancy and hydropower projects, high-rise buildings, and underground projects currently under construction ranks first in the world. The development of these major projects is closely related to concrete materials, which puts forward higher requirements for the durability of concrete. Improving the durability of modern engineering concrete and extending the safe service life of concrete structures are the major issues faced by concrete research.
The pore structure of concrete directly affects the durability of concrete, such as freeze-thaw resistance, medium penetration resistance and structural stability. Adding air controlled surfactants during concrete mixing can introduce small and uniform bubbles into the fresh concrete, which greatly improve the workability of the mixture and the durability of concrete, such as the freeze-thaw resistance, anti-permeability and carbonation resistance. Therefore, the research and production of air controlled surfactants gradually become a hot spot in the field of admixtures.
According to the definition, types and characteristics of surfactants, this paper introduces the latest research results of concrete air controlled surfactants from the perspective of the action mechanism and the failure reasons of surfactants in concrete. The application of new gemini surfactants in concrete and the molecular self-assembly behavior and foam behavior of surfactants are mainly discussed, and the influence of salt and adsorption effects in concrete on the failure of surfactants is analyzed. This paper is expected to provide a reference for the research of air controlled surfactants with better physiochemical properties in concrete.
Key words:  surfactant    classification    bubble    action mechanism    failure mechanism
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2020YFC1909900);国家自然科学基金杰出青年基金项目(51825203);国家自然科学基金(52178213);江苏省自然科学基金项目(BK20211030;BK20211031);中国国家铁路集团有限公司科技研究开发计划(N2020G046;K2020G035)
通讯作者:  *qiaomin@cnjsjk.cn   
作者简介:  乔敏,高级工程师,江苏苏博特新材料股份有限公司研究所所长,博特新材料泰州有限公司总工程师,本硕博毕业于南京大学高分子化学与物理专业。主持完成国家自然科学基金等国家及省部级项目2项,参与完成了国家自然科学基金等国家及省部级项目9项。一直围绕高性能混凝土化学外加剂的研发及产业化开展了深入的研究,开发出功能性混凝土化学外加剂十余种,产品成功应用于港珠澳跨海大桥、乌东德水电站等国家重特大工程,并出口到海外。在Cement and Concrete Research等知名期刊共计发表论文75篇,其中SCI收录 25篇,EI收录41篇;授权发明专利49项,授权国际专利3项;参编协会标准2项。
引用本文:    
乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
QIAO Min, SHAN Guangcheng, GAO Nanxiao, CHEN Jian, WU Jingzhi, ZHU Bosong, RAN Qianping. Research Progress of Concrete Air Controlled Surfactants. Materials Reports, 2022, 36(18): 20090232-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090232  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20090232
1 Du L X, Folliard K J. Cement and Concrete Research, 2005, 35, 1463.
2 Ducman V, Korat L. Materials Characterizaiton, 2016, 113, 207.
3 Ley M T, Welchel D, Peery J, et al. Construction and Building Mate-rials, 2017, 150,723.
4 Svenson S. Current Opinion in Colloid & Interface Science, 2004, 9, 201.
5 Johna V T, Simmonsa B, Mcphersonb G L, et al. Current Opinion in Colloid & Interface Science, 2002, 7, 288.
6 Czajka A, Hazell G, Eastoe J. Langmuir, 2015, 31(30), 8205.
7 Raffa P, Wever D A Z, Picchioni F, et al. Chemical Reviews, 2015, 115, 8504.
8 Snell F D, Snell C T. Journal of Chemical Education, 1958, 35, 271.
9 Schramm L L, Stasiuk E N, Marangoni D G. Annual Reportson the Progress of Chemistry, Section C: Physical Chemistry, 2003, 99, 3.
10 Wang M, Wang Y L. Soft Matter, 2014, 10(40), 7909.
11 Fainerman V B,Aksenenko E V,Mucic N,et al.Soft Matter,2014,10,6873.
12 Mirgorod Y A, Dolenko T. Langmuir, 2015, 31, 8535.
13 Faustino C, Aerafim C, Ferreira I, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 426.
14 Li L, Liu J P, Tian Q, et al. Journal of the Chemical Society of Pakistan, 2014, 36(1), 68.
15 Plank J, Sakai E, Miao C W, et al. Cement and Concrete Research, 2015, 78, 81.
16 Xing J X, Zheng G J, Bi Y, et al. Proceeding of the 2015 International Conference on Materials, 2015, 10, 230.
17 Jennings K, Marshall I, Birrell H, et al. Chemical Communications, 1998, 18(18), 1951.
18 Cai B, Dong J F, Cheng L, et al. Soft Matter, 2013, 9(31), 7637.
19 Wang L Y, Zhang Y, Ding L M, et al. RSC Advances, 2015, 5, 74764.
20 Han Y C,Wang Y L.Physical Chemistry Chemical Physics,2011,13,1939.
21 Wang M, Han Y C, Qiao F L, et al. Soft Matter, 2015, 11, 1517.
22 Mondal M H, Malik S, Roy A, et al. RSC Advances, 2015, 5, 92707.
23 You Y, Wu X N, Zhao J X, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2011, 384(3), 164.
24 Tehrani A R, Singh R G, Holmberg K. Journal of Colloid and Interface Science, 2012, 376(1), 112.
25 Zhang Q, Gao Z N, Xu F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1-3), 191.
26 Rubio-magnieto J, Luis S V, Orlof M, et al. Colloids and Surfaces B: Bionterfaces, 2013, 102, 659.
27 Qiao M, Chen J, Yu C, et al. Cement and Concrete Research, 2017, 100, 40.
28 Chen J, Qiao M, Gao N X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 686.
29 Chen J, Qiao M, Gao N X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 593.
30 Kusanoa T, Akutsub K, Iwaseb H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 109.
31 Qiao M, Ran Q P, Wu S S. Applied Surface Science, 2018, 433, 975.
32 Wennerstrom H, Lindman B. Physics Reports, 1979, 52, 1.
33 Bergstrom L M. Current Opinion in Colloid & Interface Science, 2016, 22, 46.
34 Zem T, Dubois M, Deme B, et al. Science, 1999, 283, 816.
35 Zhou Q, Rosen M J. Langmuir, 2003, 19, 4555.
36 Motomura K, Ando N, Mtasuki H, et al. Journal of Colloid Interface Science, 1990, 139, 188.
37 Galgano P D, Seoud O A. Journal of Colloid Interface Science, 2011, 361, 186.
38 Clint J H. Journal of Chemical Society-Faraday Transactions 1: Physical Chemistry In Condensed Phases, 1975, 71, 1327.
39 Holland P M,Rubingh D N.Journal of Physical Chemistry,1983,87,1984.
40 Maeda H. Advances in Colloid and Interface Science, 2010, 156, 70.
41 Ma K, Gong Y Y, Aubert T, et al. Nature, 2018, 558, 576.
42 Wang Y S,Yang S Y, Wang Q, et al. Organic Electronics,2018,53,303.
43 Naqvi A Z, Noori S, Din K. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 9.
44 Golemanov K,Denkov N D,Tcholakova S,et al. Langmuir,2008,24,9956.
45 Shan G C, Zhao S, Qiao M, et al. Construction and Building Materials, 2020, 237, 117625.
46 Petit P, Javierre I, Jezequel P H, et al. Cement and Concrete Research, 2014, 60, 37.
47 Kralchevsky P A, Danov K D, Anachkov S E. Current Opinion in Colloid & Interface Science, 2015, 20, 11.
48 Souza M T, Maykot C K, Araujo A C Z, et al. Construction and Building Materials, 2017, 157, 363.
49 Singh R, Panthi K, Weerasooriya U, et al. Langmuir,2018,34,11010.
50 Xue C Y, Zhao H, Wang Q Z, et al. Journal of Dispersion Science and Technology, 2018, 39, 1427.
51 Paul S C, Rooyen A S, Zijl G, et al. Construction and Building Mate-rials, 2018, 189, 1019.
52 Ridi F, Fratini E, Baglioni P. Journal of Colloid Interface Science, 2011, 357, 255.
53 Maneedaeng A, Flood A E. Journal of Surfactants and Detergents, 2017, 20, 263.
54 Liu X C, Zhao Y X, Li Q X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 201.
55 Tunstall L E, Scherer G W, Prudhomme R K. Cement and Concrete Research, 2017, 92, 29.
56 Qiao M, Shan G C, Chen J, et al. Construction and Building Materials, 2020, 242, 118188.
57 Plank J, Sachsenhauser B. Journal of Advanced Concrete Technology, 2006, 4, 233.
58 Ran Q P, Somasundaran P, Miao C W, et al. Journal of Colloid and Interface Science, 2009, 336, 624.
59 Ran Q P, Somasundaran P, Miao C W, et al. Journal of Dispersion Science and Technology, 2010, 31, 790.
60 Merlin F, Guitouni H, Mouboubi H, et al. Journal of Colloid and Interface Science, 2005, 281, 1.
61 Ahmed Z T, Hand D W. ACS Sustainable Chemistry & Engineering, 2015, 3, 216.
62 Baltrus J P, Lacount R B. Cement and Concrete Research,2001,31,819.
63 Naden B J. Materials and Structures, 2016, 49, 1667.
64 Tian B, Liu J P, Wang L, et al. Concrete admixtures hanfbook, Chemical Industry Press, China, 2009, pp.116(in Chinese).
田培, 刘加平, 王玲, 等.混凝土外加剂手册,化学工业出版社, 2009, pp.116.
65 Noskov B A, Krycki M M. Advances in Colloid and Interface Science, 2017, 247, 81.
66 Kummar D, Rub M A. Journal of Molecular Liquids, 2017, 238, 389.
67 Sahoo D, Chakravorti S. Photochemistry and Photobiology,2009,85,1103.
68 Sun W, Miao C W. Theory and technology of modern concrete, Science Press, 2012, pp.318(in Chinese).
孙伟, 缪昌文. 现代混凝土理论与技术, 科学出版社,2012,pp.318.
69 Basheer L, Kropp J, Cleland D. Construction and Building Materials, 2001, 15, 93.
70 Mohamed O A, Rens K L, Stalnaker J J. Journal of Material in Civil Engineering, 2000, 2, 26.
71 Ng K, Sun Y, Dai Q L, et al. Construction and Building Materials, 2014, 50, 478.
72 Yuan J, Wu Y, Zhang J K. Construction and Building Materials, 2018, 168, 975.
73 Jin S S, Zhang J X, Huang B S. Construction and Building Materials, 2013, 47, 126.
74 Coor D J, Lebourgeois J, Monteiro P J M, et al. Cement and Concrete Research, 2002, 32, 1025.
[1] 王慧鹏, 李鹏, 江聪, 朱兴高, 赵运才. 国内自润滑关节轴承试验机研制现状及展望[J]. 材料导报, 2022, 36(Z1): 22030131-4.
[2] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[3] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[4] 彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
[5] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[6] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[7] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[8] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[9] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[10] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[11] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[12] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[13] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[14] 姜骞, 于诚, 袁森森, 冉千平. 超早强聚羧酸对低坍落度混凝土流变与气泡结构经时变化的影响[J]. 材料导报, 2021, 35(20): 20022-20027.
[15] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed