Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24152-24157    https://doi.org/10.11896/cldb.20070022
  金属与金属基复合材料 |
基于迁移学习的钢金相组织分类与识别方法的研究
张永志1, 辛全忠2, 王永亮2, 孔祥明2, 刘昉2, 杨再胜2
1 内蒙古农业大学机电工程学院,呼和浩特 010018
2 内蒙古能源发电投资集团有限公司电力工程技术研究院,呼和浩特 010090
Research on Classification and Recognition Method of Steel Metallographic Structure Based on Transfer Learning
ZHANG Yongzhi1, XIN Quanzhong2, WANG Yongliang2, KONG Xiangming2, LIU Fang2, YANG Zaisheng2
1 College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2 Inner Mongolia Energy Power Investment Group Co., Ltd., Electric Power Engineering and Technology Institute, Hohhot 010090, China
下载:  全 文 ( PDF ) ( 3276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金相检验是分析钢内部组织的常用方法,其中检验图像由人工判别,容易受到主观因素的影响而造成结果的不确定。近年来,深度学习(Deep learning,DL)方法中的卷积神经网络(Convolutional neural networks, CNN)能从原始图像中学习复杂的特征,在图像分类与识别领域得到了广泛的应用。CNN建模需要大量的训练样本才能达到较好的泛化能力,材料科学与工程领域针对具体问题的数据集往往较小,不能满足CNN建模的条件,制约了DL在材料领域的应用。本研究基于ImageNet数据集预训练VGG19模型,对火力发电机组耐热钢金相检验图像进行识别,采用冻结全部卷积层权值和微调部分卷积层权值两种迁移学习方法,可以克服金相图像数据集较小的问题,实现小样本数据集的深度学习建模,两种方法的准确率分别为92.5%和94.2%。微调方式的迁移学习CNN模型具有较快的收敛速度、较高的训练精度与泛化能力,能够对金相组织图像进行较为准确的分类与识别,是一种智能的钢金相组织识别方法,也是自动化分类与识别钢金相组织的一种新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永志
辛全忠
王永亮
孔祥明
刘昉
杨再胜
关键词:  深度学习  卷积神经网络  迁移学习  金相组织  分类与识别    
Abstract: Metallographic examination is a common method to analyze the internal micro-structure of steel, in which the image discrimination is manually processed and is consequently prone to result uncertainty due to subjective factors. Recently, convolutional neural networks (CNN) in the deep learning(DL) method is widely used in the field of image classification and recognition for its capability of learning complex features from raw images. CNN modelling requires large training samples to make a good generalization ability while in material science and engineering, data set for specific actual problems are usually too small to make a good modelling and hence put limit to the DL application.In this study, VGG19 model was pre-trained based on ImageNet dataset to classify and recognize images of heat resisting steel for thermal-electric generator,using two transfer learning methods: freezing all convolutional layers' weights and fine-tuning partial convolutional layers' weights, which realized the deep learning modeling of small sample data sets, overcome the problem of small metallographic set, and identify the metallographic inspection images of heat-resistant steel of thermal power generating units, with the accuracy rates of 92.5% and 94.2%, respecfively. The transfer learning CNN model with fine-tuning has fast convergence speed, high training accuracy and generalization ability, which can accurately classify and identify metallographic images. It is a method for intelligently identifying the metallographic structure of steel, and also a new method for automatic classification and identification of steel metallographic organization.
Key words:  deep learning    convolutional neural network    transfer learning    metallographic organization    classification and recognition
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG142.1+5  
基金资助: 国家自然科学基金(52061037);内蒙古农业大学高层次人才引进科研启动项目(NDYB2016-20)
通讯作者:  zhangyongzhi@imau.edu.cn   
作者简介:  张永志,2014年毕业于内蒙古工业大学,获得工学博士学位。于2008—2016年在内蒙古能源发电投资集团有限公司电力工程技术研究院,从事火力发电厂金属与焊接检验与理化分析工作,2016年开始在内蒙古农业大学机电工程学院从事人工智能技术在材料科学与工程领域的应用研究。
引用本文:    
张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
ZHANG Yongzhi, XIN Quanzhong, WANG Yongliang, KONG Xiangming, LIU Fang, YANG Zaisheng. Research on Classification and Recognition Method of Steel Metallographic Structure Based on Transfer Learning. Materials Reports, 2021, 35(24): 24152-24157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070022  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24152
1 Bhadeshia H. Honeycombe R. Steels: microstructure and properties. Elesevier-Butterworth-Heinemann Press, Holland, 2017.
2 Tasan C, Diehl M, Yan D, et al. Annual Review of Materials Research, 2015, 45(1),391.
3 Zhu Q, Sellars C, Bhadeshia H. Materials Science and Technology, 2007, 23(7),757.
4 Kesireddy A, Mccaslin S. Application of image processing techniques to the identification of phases in steel metallographic specimens, Springer Press, Switzerland, 2015.
5 Lecun Y, Bengio Y, Hinton G. Nature, 2015, 521(7553), 436.
6 Decost B, Lei B, Francis T, et al. Microscopy and Microanalysis, 2019, 25(1),21.
7 Chowdhury A, Kautz E, Yener B, et al. Computational Materials Science, 2016, 123,176.
8 Decost B L, Holm E A. Computational materials science, 2015, 110,126.
9 Naik D L, Sajid H U, Kiran R. Metals, 2019, 9(5), 546.
10 Kusche C, Reclik T, Freund M, et al. PloS One, 2019, 14(5),1.
11 Dimiduk D M, Holm E A, Niezgoda S R. Integrating Materials and Manufacturing Innovation, 2018, 7(3), 157.
12 Decost B L, Francis T, Holm E A. Acta Materialia, 2017, 133,30.
13 Adachi Y, Taguchi M, Hirokawa S. Tetsu to Hagane-journal of the Iron and Steel Institute of Japan, 2016, 102(12), 722.
14 Dimiduk D M, Holm E A, Niezgoda S R. Integrating Materials and Manu-facturing Innovation, 2018, 7(3), 157.
15 Zhuang F Z, Luo P, He Q, et al. Ruan Jian Xue Bao/Journal of Software, 2015,26(1),26(in Chinese).
庄福振,罗平,何清,等. 软件学报, 2015, 26(1), 26.
16 Deng J, Dong W, Socher R, et al. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, 2009,pp.248.
17 Krizhevsky A, Sutskever I, Hinton G E, et al. In: Proceedings of the 25th International Conference on Neural Information Processing Systems.Nevada, 2012,pp.1097.
18 Simonyan K, Zisserman A. In:3rd International Conference on Learning Representations(ICLR). San Diego, 2015.
19 Tian J L, Deng L G. Information Technology and Network Security, 2020, 39(5),6(in Chinese).
田佳鹭,邓立国. 信息技术与网络安全, 2020, 39(5), 6.
20 Yang G C, Yang J, Li S B, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(7),127(in Chinese).
杨观赐, 杨静, 李少波,等. 华中科技大学学报(自然科学版), 2018, 46(7),127.
21 Srivastava R K, Greff K, Schmidhuber J. In:Proceedings of the 28th International Conference on Neural Information Processing Systems.Nevada, 2015,pp. 2377.
22 Liu Y, Lei Y B, Fan J L, et al. Acta Automatica Sinica, DIO:10.16383/j.aas.c190720(in Chinese).
刘颖,雷研博,范九伦,等. 自动化学报,DIO:10.16383/j.aas.c190720.
23 Fu S, Zhong S S, Lin L, et al. Computer Integrated Manufacturing Systems, http,//kns.cnki.net/kcms/detail/11.5946.tp.20200420.1333.004.html(in Chinese)
付松,钟诗胜,林琳,等. 计算机集成制造系统, http,//kns.cnki.net/kcms/detail/11.5946.tp.20200420.1333.004.html
24 Zhao L X, Hou F D, Lv Z C, et al. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7), 184.(in Chinese).
赵立新,侯发东,吕正超,等. 农业工程学报, 2020, 36(7), 184.
25 Liu D D, Li Y R, Xu B. Machinery Design & Manufacture.2020, 5, 28(in Chinese).
刘冬冬,李友荣,徐增丙. 机械设计与制造, 2020, 5, 28.
26 Hu Fang K. Microstructure recognition of high-strength steel materials based on texture recognition and deep convolutional neural network.Ph.D. Thesis, Huazhong University of Science and Technology, 2019(in Chinese).
胡方康. 基于纹理识别和深度卷积神经网络的高强钢材料显微组织识别.硕士学位论文, 华中科技大学, 2019.
27 Wang H. Computer Knowledge and Technology, 2017, 13(32),203(in Chinese).
王惠. 电脑知识与技术, 2017, 13(32),203.
28 Torrey L, Shavlik J. Handbook of research on machine learning applications and trends, algorithms, methods, and techniques, Information Science Reference Press, US, 2010.
29 Gopalakrishnan K, Khaitan S K, Choudhary A, et al. Construction and Building Materials, 2017,157(30),322.
30 Shin H C, Roth H R, Gao M, et al. Transactions on Medical Imaging, 2016, 35(5),1285.
31 He K, Zhang X, Rer S, et al. In:ICCV'15, Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV).NW Washington, 2015, pp. 1026.
[1] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[2] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed