Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16133-16137    https://doi.org/10.11896/cldb.20040148
  金属与金属基复合材料 |
回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响
张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞
苏州热工研究院有限公司,苏州 215004
Effect of Tempering Temperature on Mechanical Properties and Stress Corrosion Sensitivity of 42CrMo4 High-strength Steel
ZHANG Dubao, LI Chengtao, FANG Kewei, LUO Kunjie, WANG Li, WU Huanchun, XUE Fei
Suzhou Nuclear Power Research Institute, Suzhou 215004, China
下载:  全 文 ( PDF ) ( 4755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以42CrMo4高强钢为研究对象,采用光学显微镜(OM)、慢应变拉伸(SSRT)和透射电镜(TEM)等研究了42CrMo4显微组织中碳化物形貌和分布随温度变化的情况及其对力学性能和应力腐蚀敏感性的影响。结果表明,42CrMo4高强钢在500~650 ℃回火后,组织均为回火索氏体,随着回火温度的提高,碳化物由片状不均匀分布逐渐转变为短棒状,最终呈颗粒状弥散分布于基体上;回火过程中碳化物由不均匀片状分布转变为颗粒状弥散分布是42CrMo4高强钢综合力学性能和抗应力腐蚀敏感性持续改善的主要原因。随着回火温度上升,42CrMo4高强钢0 ℃冲击韧性逐渐提高,拉伸强度逐渐降低;回火温度为500~600 ℃时,试样具有较高的应力腐蚀敏感性,且在相同热处理条件下EH(42CrMo4充氢后的脆化指数)>ENaCl(42CrMo4在3.5%(质量分数)NaCl介质中的脆化指数),回火温度为620~650 ℃时,EHENaCl均低于25%,具有较低的应力腐蚀敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张度宝
李成涛
方可伟
罗坤杰
王力
武焕春
薛飞
关键词:  42CrMo4  回火温度  金相组织  力学性能  应力腐蚀  慢应变拉伸    
Abstract: The effects of tempering temperature on the carbide morphology and distribution in 42CrMo4 microstructure and mechanical properties and stress corrosion sensitivity were researched by the optical microscopy (OM), slow strain tensile testing (SSRT) and transmission electron microscopy (TEM). The results showed that the metallographic structure of 42CrMo4 high-strength steel was tempered sorbite after tempering at 500—650 ℃, with the increase of tempering temperature, the carbide gradually changed from uneven flakes to short rods, and finally became granular and distributed dispersively on the substrate, which was the main reason for the continuous improvement of comprehensive mechanical properties and stress corrosion resistance. As the tempering temperature increased, the impact toughness of 0 ℃ of 42CrMo4 increased and the tensile strength decreased. When the tempering temperature was from 500 ℃ to 600 ℃, the samples had higher stress corrosion sensitivity and under the same heat treatment conditions, the EHENaCl, when the tempering temperature was from 620 ℃ to 650 ℃, both EH and ENaCl were lower than 25%, which had lower stress corrosion sensitivity.
Key words:  42CrMo4    tempering temperature    metallographic microstructure    mechanical property    stress corrosion    slow strain tensile testing
                    发布日期:  2021-09-07
ZTFLH:  TG174  
基金资助: 国家自然科学基金青年基金(51431004);国家重点研发计划(2016YFB0700404)
通讯作者:  lichengtao@cgnpc.com.cn   
作者简介:  张度宝,2016年3月毕业于南京航空航天大学,获得工学硕士学位。毕业后加入苏州热工研究院有限公司工作至今,主要从事金属材料寿命评估工作。
李成涛,中国腐蚀与防护学会青年工作委员会委员,寿命评估副主任工程师,主要从事核电站材料高温高压环境中的腐蚀机理及安全评估研究。
引用本文:    
张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
ZHANG Dubao, LI Chengtao, FANG Kewei, LUO Kunjie, WANG Li, WU Huanchun, XUE Fei. Effect of Tempering Temperature on Mechanical Properties and Stress Corrosion Sensitivity of 42CrMo4 High-strength Steel. Materials Reports, 2021, 35(16): 16133-16137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040148  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16133
1 Wang B L, Niu S R, Wang Y, et al. Materials Reports, 2013, 27(S1),259(in Chinese).
王宝亮, 牛绍蕊, 王勇,等.材料导报, 2013, 27(专辑21),259.
2 Zhang W, Jia W Q, Wen J, et al. Hot Working Technology, 2018, 47(10),39(in Chinese).
张维, 贾文清, 文杰, 等.热加工工艺, 2018, 47(10),39.
3 Wang H L, Qin S F.The Scientific World Journal, DOI:10.1155/2014/567318.
4 Gamboa E, Atrens A.Engineering Failure Analysis, 2005, 12(2),201.
5 Hui Weijun, Dong Han, Weng Yuqing.Transactions of Materials & Heat Treatment, 2006, 27(6),37.
6 Yang Fubao, Bai Bengzhe, Liu Dongyu, et al. Acta Metallurgica Sinica, 2004, 40(3),296(in Chinese).
杨福宝, 白秉哲, 刘东雨, 等.金属学报, 2004, 40(3),296.
7 Liu D Y, Xu H, Yang K, et al. Acta Metallurgica Sinica, 2004, 40(8),882(in Chinese).
刘东雨, 徐鸿, 杨昆, 等.金属学报, 2004, 40(8),882.
8 Zhang Chuanyou, Wang Qingfeng, Ren Juanxia, et al. Materials & Design, 2012, 36,220.
9 Ling Wendan, Yuan Qinglong, Wang Hairui, et al. Materials Reports, 2010(S2),552(in Chinese).
凌文丹, 袁庆龙, 王海瑞,等.材料导报, 2010 (专辑16),552.
10 Chen Jundan, Mo Wenlin, Wang Pei, et al. Acta Metallurgica Sinica, 2012, 48(10),1186(in Chinese).
陈俊丹, 莫文林, 王培,等.金属学报, 2012, 48(10),1186.
11 Zheng Xinqiu, Yao Jianzhu. Metal Working, 2015(5),84(in Chinese).
郑馨秋, 姚建柱.金属加工,2015(5),84.
12 Gao Hongmei, Wen Chao, Sun Yishan. Transactions of Materials and Heat Treatment, 2018, 39(3),87(in Chinese).
高红梅, 文超, 孙轶山.材料热处理学报, 2018, 39(3),87.
13 Wen Chao, Dong Wen, Liang Huilei. Heat Treatment of Metals, 2014(12),57(in Chinese).
文超, 董雯, 梁会雷.金属热处理, 2014(12),57.
14 Cui Yuexian, Wang Changli. Jinshu duankou fenxi, Harbin Institute of Technology Press, China,1998(in Chinese).
崔约贤, 王长利.金属断口分析,哈尔滨工业大学出版社,1998.
15 Tan Wenzhi, Du Yuanlong. Materials Protection, 1988, 21(3),10(in Chinese).
谭文志, 杜元龙.材料保护, 1988, 21(3),10.
16 Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Heat Treatment of Metals, 2002, 27(3),8(in Chinese).
常开地, 顾家琳, 方鸿生, 等. 金属热处理, 2002, 27(3),8.
17 Wang L N, Liu Y, Yu J J, et al. Materials Science & Engineering A, 2009,505(1-2),144.
18 Li Y, Zhang Y J, Hui W J, et al. Acta Metallurgica Sinica, 2011, 47(4),423(in Chinese).
李阳, 张永健, 惠卫军, 等.金属学报, 2011, 47(4),423.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed