Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19022-19029    https://doi.org/10.11896/cldb.20090123
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析
黄炜1, 葛培1, 李萌2, 许洪飞1
1 西安建筑科技大学土木工程学院,西安 710055
2 陕西省天然气股份有限公司,西安 710055
Orthogonal Test and Convolution Neural Network Prediction of Hybrid Fiber Recycled Brick Aggregate Concrete
HUANG Wei1, GE Pei1, LI Meng2, XU Hongfei1
1 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Provincial Natural Gas Co.,Ltd., Xi'an 710055, China
下载:  全 文 ( PDF ) ( 5060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用正交试验研究了再生骨料比例、混杂纤维比例以及减水剂掺量三个因素对混杂纤维再生砖骨料混凝土力学性能敏感性的影响,并利用卷积神经网络(CNN)对试验结果进行了预测分析和变参数扩展分析。结果表明:再生砖骨料(RBA)与再生混凝土骨料(RCA)的比例对混杂纤维再生砖骨料混凝土的抗压强度及劈裂抗拉强度的影响最大,其次是减水剂掺量,最后是玻璃纤维(GF)与聚丙烯纤维(PF)的比例。抗压强度及劈裂抗拉强度随着RBA与RCA的比例的减小而增大,随着减水剂掺量的增大而减小。本工作建立的CNN模型具有较高的预测精度,并且可以用于试验结果的变参数扩展分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄炜
葛培
李萌
许洪飞
关键词:  再生砖骨料混凝土  混杂纤维  熵权法  正交试验  卷积神经网络(CNN)  抗压强度  劈裂抗拉强度    
Abstract: Orthogonal test was used to study the influence of the three factors of recycled aggregate ratio, hybrid fiber ratio and the amount of water reducing agent on the mechanical properties sensitivity of hybrid fiber recycled brick aggregate concrete, and the experimental results were predicted and analyzed by convolution neural network. The results show that the ratio of recycled brick aggregate to recycled concrete aggregate has the greatest influence on the compressive and splitting tensile strength of hybrid fiber recycled brick aggregate concrete, followed by the amount of water reducing agent, and finally the ratio of glass fiber to polypropylene fibers. The compressive strength and splitting tensile strength increase with the decrease of the ratio of recycled brick aggregate to recycled concrete aggregate, and decrease with the increase of the amount of water reducing agent. The convolution neural network model established in this paper has high prediction accuracy and can be used to analyze the test results with variable parameters.
Key words:  recycled brick aggregate concrete    hybrid fiber    entropy weight method    orthogonal test    convolution neural network (CNN)    compressive strength    split tensile strength
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(51978566);陕西省重点研发计划项目-重点产业创新链项目(2020ZDLNY06-04)
通讯作者:  3160586537@qq.com   
作者简介:  黄炜,工学博士,教授,博士研究生导师,主要从事装配式建筑和绿色材料的相关研究。现已主持国家自然科学基金5项;发表核心期刊论文150篇,其中SCI、EI检索50篇;获国家科技进步二等奖1项、省部级科技进步奖7项。
引用本文:    
黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
HUANG Wei, GE Pei, LI Meng, XU Hongfei. Orthogonal Test and Convolution Neural Network Prediction of Hybrid Fiber Recycled Brick Aggregate Concrete. Materials Reports, 2021, 35(19): 19022-19029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090123  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19022
1 Su H, Tang Y, Han G S, et al. China Concrete and Cement Products, 2014(10), 93(in Chinese).
宿辉, 唐阳, 韩国松, 等. 混凝土与水泥制品, 2014(10), 93.
2 Tian Z W. Analysis on the constructed wetlands' purification for Urban Lakes. Master's Thesis, Hebei University of Engineering, China, 2015(in Chinese).
田志伟. 富含砖粒的再生混凝土试验研究. 硕士学位论文, 河北工程大学, 2015.
3 Gao D Y, Jing J H, Zhou X. Acta Materiae Compositae Sinica, 2018, 35(12), 213(in Chinese).
高丹盈, 景嘉骅, 周潇. 复合材料学报, 2018, 35(12), 213.
4 Chen Z P, Zhou C H, Xu D Y, et al. Chinese Journal of Applied Mechanics, 2017, 34(1), 180(in Chinese).
陈宗平, 周春恒, 徐定一, 等. 应用力学学报, 2017, 34(1), 180.
5 Guo Y X, Li Q Y, Yue G B, et al. Journal of Building Structures, 2018, 39(4), 153(in Chinese).
郭远新, 李秋义, 岳公冰, 等. 建筑结构学报, 2018, 39(4), 153.
6 Xiao J Z, Du J T. Journal of Building Materials, 2008, 11(1), 111(in Chinese).
肖建庄, 杜江涛. 建筑材料学报, 2008, 11(1), 111.
7 Cui Z L, Lu S S, Wang Z H. Journal of Building Materials, 2012, 15(2), 264(in Chinese).
崔正龙, 路沙沙, 汪振双. 建筑材料学报, 2012, 15(2), 264.
8 Liang J F, He C F, Wang C C, et al. Concrete, 2014(4), 56(in Chinese).
梁炯丰, 何春锋, 王长诚, 等. 混凝土, 2014(4), 56.
9 Liu Z Z, Xiao B, Li X L, et al. Concrete, 2011(3), 79(in Chinese).
刘子振, 肖斌, 李晓龙, 等. 混凝土, 2011(3), 79.
10 Yang J, Du Q, Bao Y. Construction and Building Materials, 2011, 25(4), 1935.
11 Zhang S P, Zong L. Environmental Progress & Sustainable Energy, 2014, 33(4), 1283.
12 Nepomuceno M C S, Isidoro R A S, Catarino J P G. Construction & Building Materials, 2018, 165, 284.
13 Zhao A H, Zhai A L, Han J, et al. Journal of Water Resources and Architectural Engineering, 2014, 12(3), 98(in Chinese).
赵爱华, 翟爱良, 韩健, 等. 水利与建筑工程学报,2014,12(3),98.
14 Lawler J S, Zampini D, Shah S P. Journal of Materials in Civil Enginee-ring, 2005, 17(5), 595.
15 Afroughsabet V, Biolzi L, Ozbakkaloglu T. Journal of Materials Science, 2016, 51(14), 6517.
16 Banthia N, Gupta R. Materials and Structures, 2004, 37(10), 707.
17 Hossain K M A, Lachemi M, Sammour M, et al. Construction & Building Materials, 2013, 45, 20.
18 Tan H X, Fan Z F, Wang C P, et al. Natural Science Journal of Xiangtan University, 2011, 33(3), 65(in Chinese).
谭红霞, 范志甫, 汪超平, 等. 湘潭大学自然科学学报, 2011, 33(3), 65.
19 Chen A J, Wang J, Zhang Q. Concrete, 2009(1), 79(in Chinese).
陈爱玖, 王静, 章青. 混凝土, 2009(1), 79.
20 Zhou S C, Liu J J, Zhong X F, et al. Computer science, 2021, 48(7), 40(in Chinese).
周仕承, 刘京菊, 钟晓峰, 等. 计算机科学, 2021, 48(7), 40.
21 Rampasek L, Goldenberg A. Cell Systems, 2016, 2(1), 12.
22 Abadi M. ACM Sigplan Notices, 2016, 51(1), 1.
23 Han S J, Tan S Z. Computer Applications and Software, 2018, 35(6), 267(in Chinese).
韩山杰, 谈世哲. 计算机应用与软件, 2018, 35(6), 267.
24 Deng F, He Y, Zhou S, et al. Construction & Building Materials, 2018, 175, 562.
25 Huang M, Zhao Y R, Yuan J J, et al. Journal of Henan University of Engineering, 2019, 31(4), 22(in Chinese).
皇民, 赵玉如, 苑俊杰, 等. 河南工程学院学报(自然科学版), 2019, 31(4), 22.
26 Zhou S X, Sheng W, He S A. Concrete, 2019(7), 27(in Chinese).
周双喜, 盛伟, 何顺爱. 混凝土, 2019(7), 27.
27 Standard for test method of mechanical properties on ordinary concrete:GB/T50081-2002, China Architecture & Building Press, China, 2002(in Chinese).
普通混凝土力学性能试验方法标准:GB/T50081-2002, 中国建筑工业出版社, 2002.
28 Lv Z H, Cheng M, Jiang X S, et al. Shanxi Architecture, 2019, 45(11), 92(in Chinese).
吕志恒, 程铭, 蒋喜生, 等. 山西建筑, 2019, 45(11), 92.
29 Li Q. Architecture material, Tsinghua University Press, China, 2015(in Chinese).
李迁. 土木工程材料, 清华大学出版社, 2015.
30 Delgado A, Romero I. Environmental Modelling & Software, 2016, 77(3), 108.
31 Liu Z, Duanmu J S, Wang Q, et al. Mathematics Practice and Knowledge, 2005(10), 116(in Chinese).
刘智, 端木京顺, 王强, 等. 数学的实践与认识, 2005(10), 116.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[4] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[5] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[6] 侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
[7] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[8] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[9] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[10] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[11] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[12] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[13] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[14] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[15] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed