Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16021-16027    https://doi.org/10.11896/cldb.20070321
  无机非金属及其复合材料 |
减小EPS混凝土收缩的配合工艺试验研究
李碧雄1, 汪知文1, 苏柳月1,2, 冷发光3
1 四川大学建筑与环境学院,深地科学与工程教育部重点实验室,成都 610065;
2 广西科技大学土木建筑工程学院,柳州 545006;
3 中国建筑科学研究院有限公司,国家建筑安全与环境国家重点实验室,北京 100013
Experimental Study on Matching Process to Reduce the Shrinkage Properties of EPS Concrete
LI Bixiong1, WANG Zhiwen1, SU Liuyue1,2, LENG Faguang3
1 Key Laboratory of Deep Underground Science and Engineering for Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
2 School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, China;
3 State Key Laboratory of Building Safety and Built Environment, China Academy of Building Research, Beijing 100013, China
下载:  全 文 ( PDF ) ( 5462KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用正交试验方法,探究胶凝材料总量、粉煤灰用量、砂用量对EPS混凝土体积密度、抗压强度、收缩率的影响规律,并结合极差分析和方差分析确定了最优基准配合比,在此基础上系统研究了不同类型的外加剂对EPS混凝土收缩性能的影响,并从失水过程和微观结构的角度分析其干缩机理。结果表明:各组EPS混凝土的体积密度均为450~600 kg/m3,满足轻质量的特性要求;胶凝材料用量是影响EPS混凝土强度、收缩率的关键因素,而砂用量对EPS混凝土收缩率的影响最大。最优基准配合比为:胶凝材料用量340 kg/m3、粉煤灰质量分数10%、砂用量140 kg/m3;减缩剂、可再分散乳胶粉和黄原胶均可显著降低EPS混凝土的收缩率,且与失水率满足相关性较好的乘幂关系。微观分析得到:减缩剂使EPS混凝土界面过渡区的针状AFt数量明显增加;可再分散乳液凝聚形成乳胶膜后,能起到增强水化产物间的胶结性和封堵有害孔隙防止水分蒸发的作用;黄原胶降低了界面过渡区的AFt数量,使得水化产物的整体性得到显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李碧雄
汪知文
苏柳月
冷发光
关键词:  EPS混凝土  外加剂  正交试验  抗压强度  收缩性能  微观结构    
Abstract: Based on the orthogonal test, this paper investigates the effects of the dosage containing cementitious material, fly ash and river sand on the volume density, compressive strength and shrinkage value of EPS concrete. The results represent that the volume density of all groups of EPS concrete are between 450—600 kg/m3. Cementitious material is the key factor to affect the strength and shrinkage of EPS concrete. Moreover, the effect of sand content on the shrinkage of EPS concrete is greater than that of its compressive strength. The optimum combination ratio is that cementitious material 340 kg/m3, fly ash 10% (mass ratio of cementitious materials), sand 140 kg/m3. The shrinkage of EPS concrete can be significantly reduced by shrinkage reducing agent, redispersible latex powders and xanthan gum, while representing a good power function relationship with water loss ratio. The microstructure of EPS concrete is also researched by scanning electron microscopy (SEM). The results show that the amount of needle-like AFt in the interface transition zone are increased obviously by shrinkage reducing agent. After the redisper-sible latex powders are condensed to form latex film, it can enhance the cementation of hydration products and block harmful pores to prevent water losses. Meanwhile, xanthan gum can significantly improve the hydrate integrity by decreasing the content of the AFt existing in the interfacial transition zone (ITZ) of EPS concrete.
Key words:  EPS concrete    admixture    orthogonal test    compressive strength    shrinkage property    microstructure
发布日期:  2021-09-07
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51678379)
通讯作者:  libix@126.com   
作者简介:  李碧雄,博士,教授/博士研究生导师,本硕博均毕业于四川大学,加州大学伯利克分校访问学者,中国建筑学会建筑材料分会理事,再生混凝土专业委员会委员,中国硅酸盐学会固废分会建筑固废专委会委员,住房和城乡建设部防灾研究中心专家委员会委员,中国电机工程学会电力防灾减灾专委会,四川省减灾委专家委员会委员,四川省土木学会结构专委会第八届、第九届、第十届、第十一届委员,成都市土木建筑学会第九届常务理事,成都市土木建筑学会结构专委会副主任委员。曾任四川大学规建处副处长兼总工、土木系主任。主要从事结构工程抗震、结构健康检测、固废建材资源化、混凝土耐久性等研究工作。主持国家自然基金、国家重点研发计划等国家级、省部级项目多项,在国内外重要期刊发表期刊论文100余篇,获得授权发明专利近30项。获四川省科技进步二等奖。主编四川省地方标准1部。
引用本文:    
李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
LI Bixiong, WANG Zhiwen, SU Liuyue, LENG Faguang. Experimental Study on Matching Process to Reduce the Shrinkage Properties of EPS Concrete. Materials Reports, 2021, 35(16): 16021-16027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070321  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16021
1 Zhang Guihong. Development of EPS insulation on mortar and project application. Ph.D. Thesis, Chongqing University, China, 2008(in Chinese).
张桂红. 再生聚苯颗粒外保温砂浆的研制与工程应用.博士学位论文,重庆大学, 2008.
2 Chen A, Norris T G, Hopkins P M, et al. Engineering Structures, 2015,98(1),95.
3 Cook D J. Precast Concrete, 1973, 4(12),691.
4 Fernando P, Jayasinghe M, Jayasinghe C, et al. Construction and Buil-ding Materials, 2017, 139,45.
5 Mohajerani A, Ashdown M, Abdihashi L, et al. Construction and Buil-ding Materials, 2017,157,438.
6 Miled K, Roy R L, Sab K, et al. Mechanics of Materials, 2004,36(11),1031.
7 Liu Yuanchun, Zhang Lingxin, Zhan Jiapeng, et al. Concrete,2013(2),36(in Chinese).
刘嫄春, 张令心, 战佳朋, 等. 混凝土, 2013(2),36.
8 Miled K, Roy R L, Sab K, et al. Mechanics of Materials, 2004,36(11),1031.
9 Chen Bing, Tu Siyan, Weng Youfa. Journal of Building Materials, 2007(1),26(in Chinese).
陈兵, 涂思炎, 翁友法.建筑材料学报, 2007(1),26.
10 Chen B, Liu J. Construction and Building Materials, 2007,21(1),7.
11 Wu Xutao, Xie Sifa, Hu Jun. Journal of Vibration and Shock, 2013,32(17),133(in Chinese).
巫绪涛, 谢思发, 胡俊. 振动与冲击, 2013,32(17),133.
12 Hu Jun, Wang Jie, Li Zhaorui, et al. Materials Reports B:Research Papers, 2018,32(9),3146(in Chinese).
胡俊, 王杰, 李兆瑞, 等. 材料导报:研究篇, 2018,32(9),3146.
13 Zhao Yongfang. The research on composite technology of foam insulation board. Ph.D. Thesis, Chang'an University, China, 2014(in Chinese).
赵永芳. 复合泡沫保温板复合工艺研究.博士学位论文,长安大学, 2014.
14 Chen Y Y, Chen S Y, Yang C J, et al. Construction and Building Materials, 2017,137(15),261.
15 Zhang Wenhua, Lyu Yujing, Liu Pengyu. Materials Reports A: Review Papers, 2019,33(7),2214(in Chinese).
张文华, 吕毓静, 刘鹏宇. 材料导报: 综述篇, 2019,33(7),2214.
16 Sayadi A A, Tapia J V, Neitzert T R, et al. Construction and Building Materials, 2016,112,716.
17 Wang Jiachun, Huang Haiyan, Xu Jingu. New Building Materials,2010,37(3),8(in Chinese).
王甲春, 黄海燕, 许金鼓. 新型建筑材料, 2010,37(3),8.
18 Tong Y, Zhao S, Ma J, et al. Construction and Building Materials, 2014,71(30),327.
19 Babavalian A, Ranjbaran A H, Shahbeyk S. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118617.
20 Kong Xiangfu, Guo Fei, Tian Qian, et al.Concrete, 2013(11),68(in Chinese).
孔祥付, 郭飞, 田倩, 等. 混凝土, 2013(11),68.
21 Vakhshouri B, Rasiah S R, Nejadi S. Advances in Cement Research, 2019,31(7),308.
22 Su Liuyue, Li Bixiong. New Building Materials, 2020,47(2),105(in Chinese).
苏柳月, 李碧雄. 新型建筑材料, 2020,47(2),105.
23 Meng Hongrui, Hua Kai, Zhou Shikun, et al. Journal of Lanzhou University of Technology, 2017,43(4),137(in Chinese).
孟宏睿, 华凯, 周诗坤, 等. 兰州理工大学学报, 2017,43(4),137.
24 Guo Lei. The development and property of compound shrinkage reducing admixtures for concrete. Ph.D. Thesis, Dalian University of Technology, China, 2012(in Chinese).
郭磊. 复合型混凝土减缩剂的研制及其性能研究.博士学位论文,大连理工大学, 2012.
25 Qiao Dun. Influence and mechanism of shrinkage reducing admixtures on shrinkage reduction of cement based materials. Ph.D. Thesis, Chongqing University, China, 2010(in Chinese).
乔墩. 减缩剂对水泥基材料收缩抑制作用及机理研究.博士学位论文, 重庆大学, 2010.
26 Liu Chunmei, Ren Huaiyu. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2014,29(2),70(in Chinese).
刘春梅, 任怀玉. 徐州工程学院学报(自然科学版), 2014,29(2),70.
27 Zhao Ying, Zhang Hua, Zhu Jincai. Fault-block Oil and Gas Field, 1997(4),9(in Chinese).
赵颖, 张华, 朱金才. 断块油气田, 1997(4),9.
28 Zhang Yanmin. Study on the influence of rubber powder and cellulose ether on the dry shrinkage of hardened cement paste. Ph.D. Thesis, Henan University, China, 2012(in Chinese).
张彦敏. 乳胶粉与纤维素醚对硬化水泥石干缩性能影响的研究.博士学位论文,河南大学, 2012.
29 Feng Jingjing, Miao Miao, Yan Peiyu. Journal of Building Materials, 2012,15(4),439(in Chinese).
冯竟竟, 苗苗, 阎培渝. 建筑材料学报, 2012,15(4),439.
30 Dong X, Wang S, Gong C, et al. Construction and Building Material, 2014,73,255.
[1] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[2] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[5] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[6] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[7] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[8] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[9] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[10] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[11] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[12] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[13] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[14] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[15] 吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14): 20090293-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed