Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16028-16034    https://doi.org/10.11896/cldb.20060204
  无机非金属及其复合材料 |
再生混凝土抗冻性能试验研究及孔隙分布变化分析
邓祥辉1, 高晓悦2,3, 王睿1, 赵崇基2,3
1 西安工业大学建筑工程学院,西安 710021;
2 铁科院(深圳)研究设计院有限公司,深圳 518057;
3 深圳城市轨道交通减振降噪工程实验室,深圳 518057
Study on Frost Resistance and Pore Distribution Change of Recycled Concrete
DENG Xianghui1, GAO Xiaoyue2,3, WANG Rui1, ZHAO Chongji2,3
1 School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an 710021, China;
2 Shenzhen Research and Design Institute, China Academy of Railway Sciences, Shenzhen 518057, China;
3 Shenzhen Urban Rail Transit Vibration Reduction and Noise Reduction Engineering Laboratory, Shenzhen 518057, China
下载:  全 文 ( PDF ) ( 6461KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生混凝土抗冻耐久性与混凝土结构内部孔隙分布变化密切相关。为研究再生混凝土结构内部孔隙分布与抗冻耐久性的定量关系,选取再生粗骨料取代率为 0%、25%、50%、75%、100%的普通再生混凝土和引气再生混凝土作为研究对象,进行冻融循环试验和核磁共振试验,测试混凝土试件质量、动弹性模量、抗折强度以及结构内部孔隙分布情况。结果表明:在冻融循环试验中,加入引气剂可有效改善试件内部的中孔(0.01~0.05 μm)和大孔(0.05~1 μm)的占比,从而提高其抗冻性能;在10种不同配比中,引气天然骨料混凝土的抗冻性能最佳,其次是再生粗骨料替代率为50%的引气再生混凝土,其内部孔隙结构相比再生粗骨料替代率为25%、75%和100%的引气再生混凝土更加稳定;再生混凝土冻融循环后的抗折强度变化与结构内部孔隙的分布和占比密切相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓祥辉
高晓悦
王睿
赵崇基
关键词:  再生混凝土  冻融循环  核磁共振  孔隙分布  抗折强度    
Abstract: The frost resistance durability of recycled concrete is closely related to the change of pore distribution in concrete structure. In order to study the quantitative relationship between pore distribution inside the recycled concrete structure and its frost resistance durability, ordinary recycled concrete and air-entrained recycled concrete with 0%, 25%, 50%, 75% and 100% replacement rate of recycled coarse aggregate were selected as the research objects. Freeze-thaw cycle test and nuclear magnetic resonance test were carried out to test the mass, dynamic modulus of elasticity, flexural strength and pore distribution in the structure. The results show that the air-entraining admixture(AEA) can effectively improve the proportion of mesopores (0.01—0.05 μm) and macropores (0.05—1 μm) in the specimen, so as to improve its frost resistance. In 10 different proportions, the natural aggregate concrete with AEA has the best frost resistance, followed by the recycled concrete with 50% replacement rate of recycled coarse aggregate, which is more stable than that with 25%, 75% and 100% replacement rate of recycled aggregate. The change of flexural strength of recycled concrete after freeze-thaw cycle is closely related to the distribution and proportion of pores in the structure.
Key words:  recycled concrete    freeze-thaw cycle    nuclear magnetic resonance    pore distribution    flexural strength
发布日期:  2021-09-07
ZTFLH:  TU528  
基金资助: 陕西省重点研发计划项目(2018SF-391); 陕西省住房和城乡建设厅科技计划项目(2017-K55); 西安市科技局高校人才服务企业 项目(2019217214GXRC008CG009-GXYD8.2)
通讯作者:  xianghuideng@xatu.edu.cn   
作者简介:  邓祥辉,西安工业大学建筑工程学院,教授。2011年6月毕业于西安理工大学水电学院,获工学博士学位。2006年到西安工业大学建筑工程学院工作至今,主要从事地下工程支护理论与数值分析以及混凝土抗冻耐久性的研究。发表学术论文50多篇,SCI及EI检索15篇。
引用本文:    
邓祥辉, 高晓悦, 王睿, 赵崇基. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034.
DENG Xianghui, GAO Xiaoyue, WANG Rui, ZHAO Chongji. Study on Frost Resistance and Pore Distribution Change of Recycled Concrete. Materials Reports, 2021, 35(16): 16028-16034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060204  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16028
1 Cao W L, Zhao Y X, Ye T P. Journal of Harbin Institute of Technology, 2019, 51(6), 1(in Chinese).
曹万林,赵羽习,叶涛萍. 哈尔滨工业大学学报, 2019, 51(6), 1.
2 Kolay P K, Sulalman S O, Kumar S. Advances in Civil Engineering Materials, 2018, 7(3), 328.
3 Guo K, Ma H H, Yang F S, et al. Journal of Building Materials, 2020, 23(1), 230(in Chinese).
郭凯,马浩辉,杨丰硕,等. 建筑材料学报, 2020, 23(1), 230.
4 Liu C, Liu H W, Zhu C, et al. China Civil Engineering Journal, 2019, 52(11), 37(in Chinese).
刘超,刘化威,朱超,等. 土木工程学报, 2019, 52(11), 37.
5 Amorim N S, Silva G A O, Ribeiro D V. Construction and Building Materials, 2018, 161, 723.
6 Guo Z G, Chen C, Fan B J, et al. Journal of Building Structures, 2016, 37(S2), 94(in Chinese).
郭樟根, 陈晨, 范秉杰, 等. 建筑结构学报, 2016, 37(S2), 94.
7 Roumiana Z, Buyle-Bodin F, Wirquin E. Cement and Concrete Research, 2004, 34(10), 1927.
8 Alexandre J, Brito J, Ramos D. Journal of Cleaner Production, 2016, 11, 294.
9 Li Y, Wang R J, Zhao Y. Journal of the Ceramic Society of Japan, 2017, 125(1), 36.
10 Chen J X, Deng X H, Luo Y B, et al. Construction and Building Mate-rials, 2015, 83, 275.
11 Peng H, Ge Y P, Cai C S, et al. Construction and Building Materials, 2019, 194, 102.
12 Stelzner L, Powierza B, Oesch T, et al. Construction and Building Materials, 2019, 224, 600.
13 Wang X X, Shen X D, Wang H L, et al. Journal of the Ceramic Society of Japan, 2015, 123 (1), 43.
14 Qiao H X, Peng K, Chen K F, et al. Materials Reports B:Research Papers, 2020, 34(5), 10035(in Chinese).
乔宏霞, 彭宽, 陈克凡, 等. 材料导报:研究篇, 2020, 34(5), 10035.
15 Zhou K P, Li J L, Xu Y J, et al. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4), 731(in Chinese).
周科平, 李杰林, 许玉娟, 等. 岩石力学与工程学报, 2012, 31(4), 731.
16 GB/T50082-2009, Standard for text methods of long-term performance and durability of ordinary concrete, China Architecture & Building Press, China, 2009(in Chinese).
GB/T50082-2009, 普通混凝土长期性能和耐久性能试验方法标准, 中国建筑工业出版社, 2009.
17 GB/T50081-2002, Standard for text methods of mechanical performance of ordinary concrete, China Architecture & Building Press, China, 2002(in Chinese).
GB/T50081-2002, 普通混凝土力学性能试验方法标准, 中国建筑工业出版社, 2002.
18 Jensen O M, Hansen P F. Cement and Concrete Research, 2001, 31(4), 647.
19 Jensen O M, Hansen P F. Cement and Concrete Research, 2002, 32 (6), 973.
20 Yildirim S T, Meyer C, Herfellner S. Construction and Building Mate-rials, 2015, 91, 288.
[1] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[2] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[3] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[4] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[5] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[6] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[7] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[8] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[9] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[10] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[11] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[12] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[13] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[14] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[15] 董龙瑞, 杭美艳, 周港明, 贾春, 徐俊伟. 洗罐车泥浆对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 242-245.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed