Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13032-13040    https://doi.org/10.11896/cldb.20060005
  材料与可持续发展(四)一材料再制造与废弃物料资源化利用* |
高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析
陈宗平1,2,*, 许瑞天1, 梁厚燃1
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点试验室,南宁 530004
Stress-strain Constitutive Relation and Finite Element Analysis of Recycled Pebble Concrete After High Temperature Water Cooling
CHEN Zongping1,2,*, XU Ruitian1, LIANG Houran1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 8634KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高温喷水冷却后再生混凝土(卵石类)的力学性能,以温度和取代率为变化参数设计并制作了60个标准圆柱体试块,并对其进行了单轴受压试验。观察了试块的破坏形态,获取了全过程荷载-位移曲线,提出了适用于ABAQUS有限元分析的高温喷水冷却后再生混凝土本构方程,并基于前期试验验证了该本构关系。研究表明:高温喷水冷却后再生卵石混凝土在较高温度作用后出现酥松和爆裂的现象;烧失率在温度较低时出现正增长;高温喷水冷却后全再生混凝土在轴压试验中产生更多细小的裂纹,再生混凝土比普通混凝土有着更低的峰值应力和峰值应变,但有着更好的延性;所提出的高温喷水冷却后再生混凝土剩余承载力计算方法有一定适用性;基于前期22根高温喷水冷却后再生混凝土梁试验,考虑温度和取代率提出的本构方程在ABAQUS中有较好的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宗平
许瑞天
梁厚燃
关键词:  高温喷水冷却  再生混凝土  取代率  力学性能  有限元分析    
Abstract: In order to study the mechanical properties of recycled concrete (pebbles) after high-temperature water cooling, 60 standard cylinder test blocks were designed and manufactured with temperature and replacement rate as variable parameters, and uniaxial compression tests were carried out on them. The failure mode of the test block was observed, the load displacement curve of the whole process was obtained, and the constitutive equation of recycled concrete after high temperature water cooling was put forward, which was suitable for the finite element analysis of ABAQUS. The results show that: the recycled pebble concrete appears the phenomenon of looseness and bursting after high-temperature water cooling, and the burning loss rate increases positively at low temperature. The recycled concrete has lower peak stress and strain, but has better ductility than ordinary concrete. The proposed calculation method of RAC residual bearing capacity after high temperature spray cooling has certain applicability. Based on the experiment of 22 recycled concrete beams after high temperature water cooling, the constitutive equation considering temperature and substitution rate is applicable in ABAQUS.
Key words:  high temperature water cooling    recycled concrete    substitution rate    mechanical properties    finite element analysis
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TU528.0  
基金资助: 国家自然科学基金项目(51578163);八桂学者专项经费资助项目([2019]79号);广西科技基地与人才专项(桂科 AD21075031)
作者简介:  陈宗平,广西大学教授,博士研究生导师,享受国务院政府特殊津贴,国家百千万人才工程人选、国家有突出贡献中青年专家、全国宝钢优秀教师奖获得者、广西壮族自治区第五批八桂学者、广西第九批优秀专家、广西高校卓越学者、广西大学土木工程建设世界一流学科和结构工程国家重点学科学术带头人。主要从事结构工程、防灾减灾工程及防护工程方面的教学与研究工作。在海洋及近海混凝土结构、复合约束混凝土结构、异形柱结构、钢-混凝土组合及混合结构、再生混凝土结构、在役工程结构安全评估与加固、结构抗火防灾及高温损伤等方面主持国家自然科学基金、广西重点研发、广西科技攻关等国家及地方建设重点研发项目20多项;研究成果获国家科技进步二等奖2项、广西科技进步二等奖2项、广西技术发明二等奖1项,陕西省科技进步一等奖1项、陕西省科技进步二等奖1项、广西自然科学奖三等奖1项、陕西高等学校科技进步二等奖1项;出版著作3部,主编教材2部;参编国家行业标准3部、主编地方标准1部;获授权国家发明专利6项、实用新型专利21项;在国内外高水平期刊上发表SCI、EI检索论文近150篇,9篇入选中国精品科技期刊顶尖学术论文领跑者F5000,2篇入选2012—2016年建筑结构学报高被引论文,1篇入选2013—2018年工程力学高被引论文,1篇入选2017年中国百篇最具影响力国内学术论文。
引用本文:    
陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
CHEN Zongping, XU Ruitian, LIANG Houran. Stress-strain Constitutive Relation and Finite Element Analysis of Recycled Pebble Concrete After High Temperature Water Cooling. Materials Reports, 2021, 35(13): 13032-13040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060005  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13032
1 Yu Z, Shan Y, Huang Q, et al. Journal of Materials in Civil Enginee-ring,2019,31(10),04019216.1.
2 Chen Z P, Ying W D, Chen Y L, et al. Journal of Building Materials,2015,18(6),935(in Chinese).
陈宗平,应武挡,陈宇良,等.建筑材料学报,2015,18(6),935.
3 Sarhat S R, Sherwood E G. Journal of Materials in Civil Engineering,2013,25(11),1721.
4 Vieira J P B, Correia J R,de Brito J. Cement and Concrete Research,2011,41(5),533.
5 Xiao J Z, Zhang C Z. Key Engineering Materials,2007,348-349,937.
6 Wasim khalig, Taimur. Fire Safety Journal,2018,96,203.
7 Guillermo E, Sonia M V, Marianela R. Construction and Building Mate-rials,2016,111,43.
8 Liu Y, Wang W, Chen Y F, et al. Construction and Building Materials,2016,129,37.
9 Meng E, Yu Y, Yuan J, et al. Construction and Building Materials,2017,155,542.
10 Yang H, Qin Y, Liao Y, et al. Construction and Building Materials,2016,106,374.
11 Ke X J, Yang C H, Su Y S, et al. Journal of Building Materials,2017,20(5),794(in Chinese).
柯晓军,杨春辉,苏益声,等.建筑材料学报.2017,20(5),794.
12 Chen Z P, Liang H R. Journal of Civil Engineering,2019,52(12),22(in Chinese).
陈宗平,梁厚燃.土木工程学报,2019,52(12),22.
13 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Pebbles and gravel for construction (GB/T14685-2011), China Planning Press, China,2011(in Chinese).
中华人民共和国住房和城乡建设部.建设用卵石、碎石(GB/T14685-2011),中国计划出版社,2011.
14 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Code for fire protection design of tall buildings (GB50045-95), China Planning Press, China,2005(in Chinese).
中华人民共和国住房和城乡建设部.高层民用建筑设计防火规范(GB50045-95),中国计划出版社,2005.
15 Tang Jiuru. Industrial Architecture,1988(3),44(in Chinese).
唐九如.工业建筑,1988(3),44.
16 Li Wei, Guo Z H. Journal of Building Structures,1993,14(1),8(in Chinese).
李卫,过镇海.建筑结构学报,1993,14(1),8.
17 European Committee for Standardization. Eurocode 1: Actions on structures-part 1-2: general actions-actions on structures exposed to fire (en 1991-1-2:2002), European Convention for Constructional Steelwork, Belgium,2002.
18 Zhong Shantong. The concrete-filled steel tubular structures, Heilongjiang Science and Technology Press, China,1994(in Chinese).
钟善桐.钢管混凝土结构,黑龙江科学技术出版社,1994.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[12] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[13] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[14] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[15] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed