Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13025-13031    https://doi.org/10.11896/cldb.20050255
  材料与可持续发展(四)一材料再制造与废弃物料资源化利用* |
再生砖骨料混凝土力学性能及破坏机理研究
刘超1,2,3,4,*, 余伟航1,4, 刘化威2, 胡天峰2, 胡慧敏2
1 西安建筑科技大学理学院,西安 710055
2 西安建筑科技大学土木工程学院,西安 710055
3 陕西省岩土与地下空间工程重点实验室,西安 710055
4 西安建筑科技大学力学实验中心,西安 710055
Study on Mechanical Properties and Failure Mechanism of Recycled Brick Aggregate Concrete
LIU Chao1,2,3,4,*, YU Weihang1,4, LIU Huawei2, HU Tianfeng2, HU Huimin2
1 College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 College of Civil and Architectural Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
3 Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an 710055, China
4 Mechanics Experiment Center, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 7456KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以8种设计配合比的再生砖骨料次轻混凝土为研究对象,以水灰比、最大骨料尺寸和粗骨料种类为试验参数,开展了混凝土干密度、立方体抗压强度和劈裂抗拉强度试验研究,重点分析了骨料界面特征与再生砖骨料混凝土的破坏机理。结果表明:使用再生粘土砖骨料制备的次轻混凝土28 d抗压强度可达36 MPa,干密度不大于2 200 kg/m3,能够减轻自重8%~16%;随着水灰比和取代率的降低,混凝土抗压和劈裂抗拉强度均呈显著增加的趋势;最大骨料尺寸对混凝土抗压和劈裂抗拉强度的影响较小;拟合所得混凝土干密度与力学性能换算公式的相关性较好;砖骨料-砂浆界面过渡区微观结构较为密实,混凝土界面性能得到增强;界面过渡区性能和砖骨料强度是影响再生砖骨料混凝土力学性能的两个关键因素,且砖骨料强度是其中最主要的因素。综合考虑,使用再生粘土砖骨料制备次轻混凝土具有良好的经济性和广阔的工程应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘超
余伟航
刘化威
胡天峰
胡慧敏
关键词:  建筑垃圾  再生粘土砖骨料  次轻混凝土  力学性能  破坏机理    
Abstract: In this work, 8 kinds of recycled brick aggregate lightweight concrete with design mix ratio were taken as the research object, and water-cement ratio, maximum aggregate size and coarse aggregate type were taken as the test parameters. Experiments on dry density, cube compressive strength and split tensile strength of concrete were carried out, and the interface characteristics of aggregate and failure mechanism of recycled brick aggregate concrete were analyzed emphatically. The results show that the 28 d compressive strength of the secondary lightweight concrete prepared with recycled clay brick aggregate can reach 36 MPa, and the dry density is no more than 2 200 kg/m3, which can reduce the dead weight by 8%—16%. With the decrease of water-cement ratio and replacement ratio, the compressive and splitting tensile strength of concrete increased significantly. The maximum aggregate size had little influence on the compressive and splitting tensile strength of concrete. The correlation between the fitted concrete dry density and the conversion formula of mechanical properties was good. The microstructure of brick aggregate-mortar interfacial transition zone was relatively compact, and the interfacial performance of concrete was enhanced. The performance of interfacial transition zone and the strength of brick aggregate were two key factors affecting the mechanical properties of recycled brick aggregate concrete, and the strength of brick aggregate was the most important one. Taking the recycled clay brick aggregate into consideration, it had a good economic and engineering prospect to prepare the specific density concrete.
Key words:  construction waste    recycled clay brick aggregate    specific density concrete    mechanical properties    failure mechanism
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TU528.041  
基金资助: 国家自然科学基金(51878546);陕西省杰出青年科学基金项目(2020JC-46);陕西省重点研发计划项目(2018ZDCXL-SF-03-03-02);陕西省科技创新基地 (2017KTPT-19);陕西省创新人才推进计划(2018KJXX-056)
作者简介:  刘超,教授,博士研究生导师,国际材料与结构研究实验联合会(RILEM)专业委员、国际结构混凝土协会(FIB)专业委员、中国土木工程学会再生混凝土专业委员、中国硅酸盐学会固体废弃物资源化委员;主要从事建筑固废资源化再生建筑材料与智能建造技术方面的科研与成果转化工作。主持国家重点研发计划课题、国家自然科学基金项目、中国博士后基金资助项目等国家级、省部级科研项目12项;授权专利19项;主编国家行业标准1部。先后荣获陕西省杰出青年科学基金、陕西省“科技新星”称号,入选陕西高校“青年杰出人才”支持计划;荣获陕西省科学技术一等奖、二等奖,陕西省高校科学技术一等奖5项。
引用本文:    
刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
LIU Chao, YU Weihang, LIU Huawei, HU Tianfeng, HU Huimin. Study on Mechanical Properties and Failure Mechanism of Recycled Brick Aggregate Concrete. Materials Reports, 2021, 35(13): 13025-13031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050255  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13025
1 Mohammed T U, Hasnat A, Awal M A, et al. Journal of Materials in Civil Engineering,2015,27(7),B4014005.
2 Yang J, Du Q, Bao Y W. Construction and Building Materials,2011,25(4),1935.
3 Zheng C C, Lou C, Du G, et al. Results in Physics,2018,9,1317.
4 Zong L, Fei Z Y, Zhang S P. Journal of Cleaner Production,2014,70,175.
5 Wong C L, Mo K H, Yap S P, et al. Journal of Cleaner Production,2018,195,226.
6 Bazaz J B, Khayati M. Journal of Materials in Civil Engineering,2012,24(4),330.
7 Yang J H, Xu L, Fan X, et al. Concrete,2015(3),82(in Chinese).
杨健辉,徐璐,樊晓,等.混凝土,2015(3),82.
8 Liu Q, Tong T, Liu S H, et al. Construction and Building Materials,2014,73,754.
9 Yan H D, Chen X F. Sichuan Building Science,2009,5,179(in Chinese).
严捍东,陈秀峰.四川建筑科学研究,2009,5,179.
10 Uddin M T, Mahmood A H, Kamal M R I, et al. Construction and Buil-ding Materials,2017,134,713.
11 Xuan H V, Laurent D, Yann M, et al. Construction and Building Mate-rials,2011,25(10),3941.
12 Wang X J, Liu L, Jia K C, et al. Journal of Building Materials,2021,24(1),207(in Chinese)
王小娟,刘路,贾昆程,等.建筑材料学报,2021,24(1),207.
13 Guo R X, Guo J D, Yan F, et al. Bulletin of the Chinese Ceramic Society,2019(5),1323.
郭荣鑫,郭佳栋,颜峰,等.硅酸盐通报,2019(5),1323.
14 Wasserman R, Bentur A. Cement and Concrete Composites,1996,18,67.
15 Sidney D. Cement and Concrete Composites,2004,26(8),913.
16 Huang L M, Yu L, Zhang H, et al. Construction and Building Materials,2019,216,390.
17 Bentz D P, Snyder K A. Cement and Concrete Research,1999,29(11),1863.
18 Ma X W, Liu J H, Shi C J. Construction And Building Materials,2019,218,385.
19 Nie S, Hu S G, Wang F Z, et al. Construction and Building Materials,2017,153,165.
20 Nie S, Zhang W Q, Hu S G, et al. Construction and Buil-ding Materials,2018,168,522.
21 Yue G B. Study on the recycled concrete multi-interface structure and the damage mechanism of performance. Ph.D. Thesis, Qingdao University of Technology, China,2018(in Chinese).
岳公冰.再生混凝土多重界面结构与性能损伤机理研究.博士学位论文,青岛理工大学,2018.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed