Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20090293-5    https://doi.org/10.11896/cldb.20090293
  无机非金属及其复合材料 |
利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能
吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖
广东工业大学材料与能源学院,广州 510006
Synthesis and Phase Change Performance of NaNO3@SiO2 Microcapsules by Using Taguchi Experimental Design
WU Fan, MO Bingzhong, HE Lijuan, MO Songping, JIA Lisi, CHEN Ying
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 2443KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变材料(PCM)广泛应用于建筑节能、废热回收和太阳能蓄热等领域。相变材料微胶囊化是近年来能源储存和利用领域的研究热点。微胶囊包封率大小的确定需要兼顾胶囊储能效率和壳层强度。现有文献对高温无机相变微胶囊的报道很少,且未见关于包封率可控的NaNO3微胶囊的报道。本工作采用田口实验设计方法,通过限水式溶胶-凝胶法制备适用于高温应用的NaNO3@SiO2微胶囊,得到了包封率为44.8%~95.0%、包封效率为39.0%~92.9%的微胶囊,揭示了各因素对胶囊包封率的影响。通过对微胶囊的热性能和热稳定性等进行表征发现,微胶囊的储能效率随包封率的增大而提高,但热稳定性随包封率的增大而降低。因此,应根据实际应用的需要制备适当包封率的微胶囊。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴凡
莫丙忠
何利娟
莫松平
贾莉斯
陈颖
关键词:  相变微胶囊  包封率  正交试验  硝酸钠  二氧化硅    
Abstract: Phase change materials (PCM) have been widely used in various fields such as building energy conservation, waste heat recovery and solar energy heat storage. Microencapsulation of phase change materials (PCM) has been a research hotspot in the fields of energy storage and utilization in recent years. The selection of encapsulation ratio of microcapsules needs to balance the energy storage efficiency and shell strength of the capsules. At present, there are few reports on high-temperature inorganic phase change microcapsules, and no study on NaNO3 microcapsules with controllable encapsulation ratio has been reported. In this work, the Taguchi experimental design method was adopted to prepare NaNO3@SiO2 microcapsules for high-temperature applications by the water-limited sol-gel method. Microcapsules with encapsulation ratios between 44.8% and 95.0% and encapsulation efficiencies between 39.0% and 92.9% were obtained. The effects of various factors on the encapsulation ratio of the capsules were revealed. By characterizing the thermal performance and thermal stability of the microcapsules, it was found that the energy storage performance of the microcapsules increased with encapsulation ratio increasing, while the thermal stability decreased with encapsulation ratio increasing. Therefore, microcapsules with appropriate encapsulation ratio should be prepared according to the requirements of practical applications.
Key words:  phase change microcapsule    encapsulation ratio    orthogonal test    sodium nitrate    silica
发布日期:  2022-07-26
ZTFLH:  TK124  
基金资助: 国家自然科学基金(51976040)
通讯作者:  songpingmo@126.com   
作者简介:  吴凡,广东工业大学动力工程专业在读硕士研究生,师从莫松平教授。2018年获湖南人文科技学院能源与动力工程专业学士学位。硕士期间发表SCI论文1篇、会议论文1篇,申请国家发明专利2项。主要研究方向为相变微胶囊的制备及其热物性研究、微通道粒子惯性聚焦及颗粒分选数值模拟研究。
莫松平,广东工业大学教授,国家公派美国德州农工大学访问学者,2004年获中国科学技术大学热能与能力工程学士学位,2009年获中国科学技术大学工程热物理博士学位。主要研究方向包括微纳相变材料的制备、热物性、相变特性及其在储能中的应用。主持国家自然科学基金项目、广东省科技计划项目、广东省教育部产学研结合项目、广州市科技计划对外合作项目等多项科研项目;在国内外知名期刊上发表论文50余篇,授权国家专利10余项,出版编著1部,担任多个国际知名期刊审稿人。
引用本文:    
吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14): 20090293-5.
WU Fan, MO Bingzhong, HE Lijuan, MO Songping, JIA Lisi, CHEN Ying. Synthesis and Phase Change Performance of NaNO3@SiO2 Microcapsules by Using Taguchi Experimental Design. Materials Reports, 2022, 36(14): 20090293-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090293  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20090293
1 Cabeza L F, Castell A, Barreneche C, et al. Renewable & Sustainable Energy Reviews, 2011, 15(3), 1675.
2 Kaizawa A, Kamano H, Kawai A, et al. Heat Mass Transfer, 2008, 44(7), 763.
3 Garcia P, Olcese M, Rougé S, et al. Energy Procedia, 2015, 69, 842.
4 Cáceres G, Montané M, Nasirov S, et al. Sustainability,2016,8(2),106.
5 Liu C, Rao Z, Zhao J, et al. Nano Energy, 2015, 13, 814.
6 Jacob R, Bruno F. Renewable & Sustainable Energy Reviews, 2015, 48, 79.
7 Tong X M, Yan Z Y, Hao Q Q, et al. New Chemical Materials, 2016, 44 (2), 86(in Chinese).
童晓梅, 闫子英, 郝芹芹, 等. 化工新型材料, 2016, 44(2), 86.
8 Miliána Y E, Gutiérreza A, Grágeda M, et al. Renewable & Sustainable Energy Reviews, 2017, 73, 983.
9 Nomura T, Sheng N, Zhu C, et al. Applied Energy, 2017,188(15), 9.
10 Zhang H, Balram A, Tiznobaik H, et al. Applied Thermal Engineering, 2018, 136(25), 268.
11 Zhang H, Shin D, Santhanagopalan S. Renewable Energy, 2019, 134, 1156.
12 Morali U, Demiral H, Sensoz S. J Clean Prod, 2018. 189(60), 2.
13 Lu S F, Xing J W, Zhang Z H, et al. Polymer Materials Science and Engineering, 2010, 26(12), 39(in Chinese).
陆少锋, 邢建伟, 张昭环, 等. 高分子材料科学与工程, 2010, 26(12), 39.
[1] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[2] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[3] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[4] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[5] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[6] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[7] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅱ.成核阶段的可视化研究[J]. 材料导报, 2022, 36(12): 21040113-5.
[8] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅰ.工艺条件的影响[J]. 材料导报, 2022, 36(11): 21040123-4.
[9] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[10] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[11] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[12] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[13] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[14] 冯江波, 王景平, 苑慧莹, 任秦博, 曹金安, 王学川. 不同粒径PANI/SiO2对环氧涂层防腐性能的影响[J]. 材料导报, 2021, 35(24): 24182-24188.
[15] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed