Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21030132-7    https://doi.org/10.11896/cldb.21030132
  无机非金属及其复合材料 |
磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附
吕博, 陈连喜*
武汉理工大学化学化工与生命科学学院,武汉 430070
Synthesis of Phosphonic Acid Functionalized Hollow Silica and Its Adsorption of Cd2+
LYU Bo, CHEN Lianxi
School of Chemistry, Chemical Engineering and Life Sciences,Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 2963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在水溶液中,分别以2-氰乙基三乙氧基硅烷(CTES)、3-脲丙基三甲氧基硅烷(UDPTMS)为内核与外壳前驱体,氨水为催化剂,通过一步法及官能团差异性刻蚀法合成了脲基功能化空心二氧化硅纳米球(UD-HSNs),并通过后磷酸化将功能化二氧化硅转化为磷酸基功能化空心二氧化硅纳米球(H2O3P-HSNs)。通过扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱仪和热重(TG)分析对所得微球的形貌、结构及性能进行了表征。研究结果表明,UD-HSNs与H2O3P-HSNs的粒径分布在450~650 nm范围内,壳层厚度在70~100 nm范围内,磷酸基团修饰前后纳米粒子的形貌和粒径变化不大。从比表面积和孔径分析可知,含脲基或磷酸基团的空心二氧化硅材料均具有一定的比表面积,FTIR、EDS、XPS和TG等表明,磷酸基团被成功地接枝到了二氧化硅材料上,改性后的材料含有一定量的P元素,其含量在5%左右。吸附实验表明,UD-HSNs与H2O3P-HSNs在120 min后逐渐能接近饱和吸附量,pH值为6左右、初始Cd2+浓度在100~180 mg/L时两种材料具有较好的吸附性能,UD-HSNs的最大吸附量达152.63 mg/g,H2O3P-HSNs的最大吸附量达171.81 mg/g。在经过五次循环使用后,两种材料对Cd2+的吸附性能仍然是第一次的65%~70%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕博
陈连喜
关键词:  磷酸  空心二氧化硅  吸附    
Abstract: In an aqueous solution, 2-cyanoethyltriethoxysilane (CTES) and 3-ureapropyltrimethoxysilane (UDPTMS) are used as the precursors of the core and the outer shell, and ammonia is used as the catalyst. Through a one-step method and differential etching of functional groups urea-based functionalized hollow silica nanospheres (UD-HSNs) were synthesized by the method, and the functionalized silica was converted into phosphoric acid-based functionalized hollow silica nanospheres (H2O3P-HSNs) by post-phosphorylation. Through scanning electron microscope (SEM), field emission transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometer and thermogravimetric (TG) analysis, the morphology, structure and the performance was characterized. The research results show that the particle size distribution of the urea-based and phosphoric acid-based functionalized hollow silica particles is in the range of 450—650 nm, and the shell thickness is in the range of 70—100 nm. The morphology and morphology of the nanoparticles before and after the phosphoric acid group modification the particle size changes little. From the analysis of specific surface area and pore size, hollow silica materials containing urea groups or phosphoric acid groups all have a certain specific surface area. FTIR, EDS, XPS and TG show that the phosphoric acid groups are successfully grafted to the silica in terms of materials, the modified material contains a certain amount of P element, the content of which is about 5%. The adsorption experiment shows that the two materials can gradually approach the saturated adsorption capacity after 120 min. When the pH value is about 6, the material has better adsorption performance when the initial Cd2+ concentration is 100—180 mg/L. The maximum adsorption capacity of UD-HSNs is 152.63 mg/g, and the maximum adsorption capacity of H2O3P-HSNs is 171.81 mg/g. After 5 cycles of use, the adsorption performance of Cd2+ is still 65%—70% of the first time.
Key words:  phosphonic acid    hollow silica    adsorbent
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  O641  
通讯作者:  clx@whut.edu.cn   
作者简介:  吕博,2018年6月毕业于济南大学,获得理学学士学位。现为武汉理工大学化学化工与生命科学学院硕士研究生,在陈连喜副教授的指导下进行研究。目前主要研究领域为有机无机杂化材料。
陈连喜,武汉理工大学化学化工与生命科学学院副教授、硕士研究生导师。1985年7月本科毕业于武汉大学化学系,1988年硕士毕业于武汉大学化学系,1988年至今分别在湖北省化学研究所、香港中文大学、武汉理工大学生物材料与工程研究中心和武汉理工大学化学系工作。从事化学和化工研究近30年,具有丰富的理论和应用研究经验。先后从事农用化学品、天然产物和药物、功能高分子材料及有机无机杂化材料等研究。与广东省企业有多年合作关系,先后两次担任广东省科技特派员。主持和参加包括国家科技攻关项目、国家自然科学基金、省部级科技项目、军工项目等多项科研项目,发表文章60多篇,其中20余篇被SCI、EI收录,近10项专利获授权。
引用本文:    
吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
LYU Bo, CHEN Lianxi. Synthesis of Phosphonic Acid Functionalized Hollow Silica and Its Adsorption of Cd2+. Materials Reports, 2022, 36(9): 21030132-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030132  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21030132
1 Németh G, Mlinárik L, Ákos T. Journal of African Earth Sciences, 2016, 122, 98.
2 Almutairi F M, Williams P M, Lovitt R W. Desalination & Water Treatment, 2012, 42(1-3), 131.
3 Safari M,Yamini Y, Masoomi M Y, et al. Microchimica Acta, 2017, 184(5), 1555.
4 Tran H N, Lin C C, Chao H P. Separation and Purification Technology, 2018, 192, 36.
5 Direnzo F, Cambon H, Dutartre R. Microporous Materials, 1997, 10 (4), 283.
6 Wan Y, Zhao D Y. Chemical Reviews, 2007, 107(7), 2821.
7 Zhu Y F, Fang Y, Borchardt L, et al. Microporous and Mesoporous Materials, 2011, 141, 199.
8 Ghosh C R, Paria S. Chemical Reviews, 2012, 112(4), 2373.
9 Li W, Liu J, Zhao D Y. Nature Reviews Materials, 2016, 1, 16023.
10 Aghayan H, Khanchi A R, Mahjoub A R, et al. Applied Surface Science, 2014, 274, 7.
11 Hu P, Ai D, Jiang X, et al. Journal of Thermoplastic Composite Mate-rials, 2020, 33(2), 198.
12 Chen J, Wu X, Hou X, et al. ACS Applied Materials & Interfaces, 2014, 6(24), 21921.
13 Castillo S I R, Ouhajji S, Fokker S, et al. Microporous and Mesoporous Materials, 2014, 195, 75.
14 Bahrami Z, Badiei A, Atyabi F. Chemical Engineering Research and Design, 2014, 92(7), 1296.
15 Hu J, Wang X, Liu L, et al. Journal of Materials Chemistry A, 2014, 2(46), 19771.
16 Wang X Y, Huang Y L, Liu W B, et al. Journal of Molecular Science, 2013, 29(4), 320(in Chinese).
王晓艳, 黄玉玲, 刘文波, 等. 分子科学学报, 2013, 29(4), 320.
17 Shen Q H, Liu M, Yu D D, et al. Journal of Chinese Chemical Society, 2018, 65, 591.
18 Antochshuk V, Olkhovyk O, Jaroniec M, et al. Langmuir,2003,19,3031.
19 Teng M M, Wang H T, Li F T, et al. Journal of Colloid and Interface Science, 2011, 355, 23.
20 Heidari A, Younesi H, Mehraban Z. Chemical Engineering Journal, 2009, 153, 70.
21 Benitez M, Das D, Ferreira R, et al. Chemistry of Materials, 2006, 18, 5597.
22 Bala T, Prasad B L, Sastry M, et al. Journal of Physical Chemistry A, 2007, 111, 6183.
23 Xu G, Zhao Y L, Hou L P, et al. Chemical Engineering Journal, 2017, 325, 533.
24 Illy N, Fache M, Menard R, et al. Polymer Chemistry, 2015, 6, 6257.
25 Han S Y, Yue B H, Yan L M. Journal of Chemical Physics, 2014, 30(1), 8(in Chinese).
韩帅元, 岳宝华, 严六明. 物理化学学报, 2014, 30(1), 8.
26 Dai Q G, Zhang Z Y, Yan J R, et al. Environmental Science & Technology, 2018, 52, 13430.
27 Zhao R, Li X, Sun B, et al. Chemical Engineering Journal,2015,268,290.
28 Xu G, Wang L, Xie Y J, et al. Journal of Hazardous Materials, 2018, 15(344), 679.
29 Yin P, Tian Y, Wang Z D, et al. Materials Chemistry and Physics, 2011, 129, 168.
30 Todorov P, Naydenova E, Popova J, et al. Heteroatom Chemistry: An International Journal of Main Group Elements, 2008, 19(7), 719.
31 Liu Z H, Li J, Chen L X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 648.
32 Li J, Jia Z, Chen L X, et al. Journal of Sol-Gel Science and Technology, 2017, 84(2),290.
33 Zeng F L, Chen L X, Ye X S, et al. RSC Advance, 2016,32, 6914.
34 Li J, Chen L X, Li X, et al. Applied Surface Science, 2015, 340, 126.
35 Liu Z H, Chen L X, Ye X S, et al. New Journal of Chemistry, 2016, 41(1), 825.
[1] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[2] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[3] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[4] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[5] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[6] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[7] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[8] 张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞. NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究[J]. 材料导报, 2022, 36(1): 20090353-10.
[9] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[10] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[11] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[12] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[13] 陶柳实, 李娜, 张世超, 王华, 潘传才, 艾兵, 王春朋. Al(H2PO4)3/Al2O3复合硬质材料吸湿改性研究[J]. 材料导报, 2021, 35(z2): 94-96.
[14] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[15] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed