Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20050183-11    https://doi.org/10.11896/cldb.20050183
  无机非金属及其复合材料 |
稻壳基材料应用于水污染治理领域的研究进展
胡世琴, 杨金辉*, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅
南华大学土木工程学院,湖南 衡阳 421001
Research Progress of Rice Husk Based Materials in the Field of Water Pollution Control
HU Shiqin, YANG Jinhui*, YANG Bin, WANG Jinsong, ZHOU Shukui, LEI Zengjiang, LUO Yi
School of Civil Engineering, University of South China, Hengyang 421001,Hunan,China
下载:  全 文 ( PDF ) ( 4787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的快速发展,电镀设备、采矿、纺织等行业排放的废水含有大量的重金属离子和有机污染物,这些污染物严重危害人类的身体健康。因此,如何快速有效地处理水体中的重金属离子和有机污染物是环境修复领域中亟待解决的问题。稻壳因具有来源广泛、可再生、环境友好等特点而被广泛应用于吸附材料和光催化材料领域。
大量研究表明,稻壳能够去除污染水体中重金属离子和有机物的种类很多,但是对大多数污染物的去除能力不强,难以在实际应用中得到进一步推广。以稻壳为基体材料制备有高效去除能力的功能性材料,是近几年环境修复领域的研究热点。目前,研究者尝试以炭化、化学修饰等方式对稻壳改性,从而增大比表面积、孔隙率或者增加含氧官能团的数量,吸附性能也能随之改善,但是以上改性后的稻壳材料存在吸附能力弱和容易产生二次污染等问题。研究发现,负载Fe3O4制备的磁性稻壳生物炭复合材料,不仅吸附性能强,且具有易分离、稳定性强、不会对环境造成二次污染等优点,这为稻壳基材料在实际应用的推广奠定了基础。另外,有研究报道,将稻壳中的SiO2作为半导体光催化剂(如TiO2、Ni2O3)的载体可提高其光催化性能、回收利用率,使其在光学领域具有良好的使用性能。
本文综述了稻壳材料本身的特性和改性稻壳制备稻壳基吸附剂的方法,讨论了稻壳基及其复合材料在水污染治理领域中作为吸附剂和光催化剂的应用。从不同类型的污染物角度出发,论述了稻壳基材料针对重金属离子、有机污染物处理过程中稻壳掺杂材料功能及体系作用机理的影响,还分析了影响污染物吸附的重要因素,最后对目前稻壳基材料在水治理领域应用进行了总结和对今后的研究方向做了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡世琴
杨金辉
杨斌
王劲松
周书葵
雷增江
骆毅
关键词:  稻壳  吸附  光催化  重金属离子  有机污染物    
Abstract: With the rapid development of industry, wastewater discharged from electroplating equipment, mining, textile and other industries contains a large amount of heavy metal ions and organic pollutants, which seriously endangers human health. Therefore, how to quickly and effectively treat heavy metal ions and organic pollutants in water bodies is an urgent problem in the field of environmental remediation. Rice husk is widely used in the fields of adsorption materials and photocatalytic materials because of its wide-source, renewable, and environmentally friendly characteristics.
A large number of studies have shown that rice husk can remove many types of heavy metal ions and organic matter in polluted water, but its ability to remove most pollutants is not strong, and it is difficult to be further promoted in practical applications. Using rice husk as a matrix material to prepare functional materials with efficient removal ability has been a research hotspot in the field of environmental remediation in recent years. At present, researchers are trying to modify the rice husk by carbonization and chemical modification to increase the specific surface area and porosity, or increase the number of oxygen-containing functional groups, with the adsorption performance also improved. However, the above modified rice husk materials have problems such as weak adsorption capacity and easy secondary pollution.The study found that the magnetic rice husk biochar composite material prepared by loading Fe3O4 not only has strong adsorption performance, but also has the advantages of easy separation, strong stability, and no secondary pollution to the environment. It is a rice husk-based material in practical applications and the promotion laid the foundation. In addition, studies have reported that using SiO2 in rice husk as a support for semiconductor photocatalysts (such as TiO2, Ni2O3) can improve its photocatalytic performance and recycling rate, making it have good performance in the optical field.
This article reviews the properties of rice husk itself and the methods of preparing rice husk-based adsorbent by modified rice husk, and discusses the application of rice husk-based and its composite materials as adsorbents and photocatalysts in the field of water pollution control. From the perspective of different types of pollutants, this paper discusses the effects of rice husk doping material function and system action mechanism in the treatment of heavy metal ions and organic pollutants. It also analyzes the important factors affecting the adsorption of pollutants. The application of materials in the field of water treatment is summarized and future research directions are prospected.
Key words:  rice husk    adsorption    photocatalysis    heavy metal    organic pollutants
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TQ424  
基金资助: 国家自然科学基金(21177053;51174117); 湖南省重点学科资助项目(土木工程 0212-002300001)
通讯作者:  yangjinhui126@126.com   
作者简介:  胡世琴,2019年6月毕业于南昌大学科学技术学院,获得工学学士学位。现为南华大学土木工程学院硕士研究生。目前主要研究领域为水处理理论与技术。
杨金辉,南华大学土木工程学院教授、硕士研究生导师,近年来,主持湖南省科技厅项目2项、湖南省教学研究项目2项、南华大学教学研究项目6项,主要参与国家自然科学基金、湖南省自然科学基金、核能开发研究等项目共20余项;主编出版专著2本,参编教材2本;在国家级或省级刊物发表论文70余篇。
引用本文:    
胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
HU Shiqin, YANG Jinhui, YANG Bin, WANG Jinsong, ZHOU Shukui, LEI Zengjiang, LUO Yi. Research Progress of Rice Husk Based Materials in the Field of Water Pollution Control. Materials Reports, 2022, 36(4): 20050183-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050183  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20050183
1 Zhang J Y, Zhang Z Z, Xu J. China Dyeing & Finishing, 2019, 45(5), 52(in Chinese).
张靖宇, 张占柱, 许佳. 印染, 2019, 45(5), 52.
2 Zhang P. Preparation of PDA and application of it for removal of organic pollutants in water. Ph.D. Thesis, Chongqing University, China, 2011(in Chinese).
张鹏. PDA的制备及对水中有机污染物的絮凝去除. 博士学位论文,重庆大学, 2011.
3 Wang X P, Xue Y W, Cheng X R, et al. China Rural Water and Hydropower, 2013(12), 51(in Chinese).
王晓佩, 薛英文, 程晓如, 等. 中国农村水利水电, 2013(12), 51.
4 Gao C C, Li F C, Liu H C, et al. Industrial Water Treatment, 2020, 40(5), 18(in Chinese).
高闯闯, 李奉翠, 刘海成, 等. 工业水处理, 2020, 40(5), 18.
5 Zhou Z F, Zhang Y X, Zhao B P,et al. Journal of Chongqing University, 2019, 42(7), 79(in Chinese).
周智芳, 张有贤, 赵佰平, 等. 重庆大学学报, 2019, 42(7), 79.
6 Zheng X B.China Oils and Fats, 2020, 45(2), 54(in Chinese).
郑学斌. 中国油脂, 2020, 45(2), 54.
7 He W X, Zhang Z L, Ji J B.Chemical Industry and Engineering Progress, 2016, 35(5), 1366(in Chinese).
何文修, 张智亮, 计建炳. 化工进展, 2016, 35(5), 1366.
8 Wang L, Wang L J, Yao H Y. Cereals & Oils, 2006(3), 16(in Chinese).
王立, 王领军, 姚惠源. 粮食与油脂, 2006(3), 16.
9 Witoon T, Chareonpanich M. Materials Letters, 2007, 62(10), 1476.
10 Xia T M, Wang Y R, Fan P C. Industrial Water Treatment, 2013, 33(3), 47(in Chinese).
夏天明, 王营茹, 范鹏程. 工业水处理, 2013, 33(3), 47.
11 Zhang J Z, Shang P, Liu T P.Journal of Anhui Agricultural Sciences, 2011, 39(1), 228(in Chinese).
张建柱, 商平, 刘涛利. 安徽农业科学, 2011, 39(1), 228.
12 Qian J Q. Journal of the Chinese Cereals and Oils Association, 2000(6), 43(in Chinese).
钱俊青. 中国粮油学报, 2000(6), 43.
13 Shi J X, Fan X L, Tsang D C W, et al. Chemosphere, 2019, 235, 825.
14 Chen T T. Study on adsorption property about rice husk ash and modified rice husk.Master's Thesis, Nanjing University of Science and Technology, China, 2013(in Chinese).
陈婷婷. 稻壳灰及改性稻壳灰吸附性能研究. 硕士学位论文, 南京理工大学,2013.
15 Wang H, Zhou J Y, Na L S.Journal of Jilin Institute of Chemical Technology, 2019, 36(9), 54(in Chinese).
王红,邹继颖,那拉苏.吉林化工学院学报, 2019, 36(9), 54.
16 Li H L. Study on adsorption performance and mechanism of modified rice husk for Pb2+ and Cd2+ in contaminated water. Master's Thesis, East China Institute of Technology, China, 2018(in Chinese).
李海林. 改性稻壳对污染水中Pb2+和Cd2+的吸附性能及机理研究. 硕士学位论文, 东华理工大学, 2018.
17 Lv S L, Li C X, Mi J G, et al. Applied Surface Science, 2020, 510, 145425.
18 Rao W L. Modified rice husk ash and its application in organic wastewater treatment.Master's Thesis, Wuhan Institute of Technology, China, 2015(in Chinese).
饶文龙. 改性稻壳灰及其在有机废水处理中的应用. 硕士学位论文,武汉工程大学, 2015.
19 Yang N, Zhu S M, Zhang D, et al. Materials Letters, 2008, 62(4-5), 645.
20 Xiang J X, Lin Q T, Cheng S L, et al. Environmental Science and Pollution Research, 2018, 25(14), 14032.
21 Tang J D. Study on hexavalent chromium removal from aqueous solution with rice husk biochar coated with graphene oxide. Master's Thesis, Xiamen University, China, 2019(in Chinese).
唐吉丹. 氧化石墨烯-稻壳生物炭复合材料对水中六价铬的去除研究. 硕士学位论文,厦门大学, 2019.
22 Mohamed S, Mostafa R A, Ahmed H, et al. Journal of Environmental Management, 2017, 204(Pt 1), 189.
23 Fatimah I, Said A, Hasanah U A. Bulletin of Chemical Reaction Engineering & Catalysis, 2015, 10(1), 43.
24 Ding B D, Xiao X B, An L,et al. Guangzhou Chemical Industry, 2016, 44(24), 1(in Chinese).
丁保迪, 肖显斌, 安璐, 等. 广州化工, 2016, 44(24), 1.
25 Zhao M Y. Preparation of rice hull adsorbent and its treatment efficiency of marine petroleum pollution.Master's Thesis, Dalian Polytechnic University, China, 2013(in Chinese).
赵美玉. 稻壳炭的制备及处理石油污染海水效能研究. 硕士学位论文,大连工业大学, 2013.
26 Li H D, Li Y, Zhou W,et al. Journal of Agro-Environment Science. 2018, 37(9), 1856(in Chinese).
李洪达, 李艳, 周薇, 等. 农业环境科学学报, 2018, 37(9), 1856.
27 Sui J Y. Preparation of modified silica/carbon composites derived from rice husks and its effects on properties of the natural of in rubber compo-sites.Master's Thesis, Jilin University, China, 2019(in Chinese).
隋佳烊. 改性稻壳基二氧化硅/碳复合材料的制备及其在天然橡胶中性能研究. 硕士学位论文,吉林大学, 2019.
28 Li M K, Zhou D,Gao Z,et al. China Environmental Science, 2018, 38(10), 3823(in Chinese).
李梦柯, 周丹, 高震, 等. 中国环境科学, 2018, 38(10), 3823.
29 Gu S. Preparation and carbon footprint assessment of high-performance nanosilica from rice husk.Ph.D. Thesis, Zhejiang University, China, 2015(in Chinese).
顾珊. 稻壳基高性能纳米白炭黑的制备研究及其碳足迹分析. 博士学位论文,浙江大学,2015.
30 Miao W. Ageing effect of biochar on soil nutrients and growth of rice. Ph.D. Thesis, Shenyang Agricultural University, China, 2014(in Chinese).
苗微. 生物炭陈化对土壤养分和水稻生长的影响. 博士学位论文, 沈阳农业大学, 2014.
31 Genieva S D, Turmanova S C, Dimitrova A S, et al. Journal of Thermal Analysis and Calorimetry, 2008, 93(2), 387.
32 Huang Y F, Wei L, Li X, et al. Research of Environmental Sciences, 2020, 33(8),1919(in Chinese).
黄玉芬, 魏岚, 李翔, 等. 环境科学研究, 2020, 33(8), 1919.
33 Su X L.Research on the critical components of biomass continual pyrolysis reactor. Master's Thesis, Northeast Agricultural University, China, 2013(in Chinese).
苏旭林. 生物质连续热解反应装置关键部件研究. 硕士学位论文, 东北农业大学, 2013.
34 Cai S Y, Huang B J, Gui S Q,et al. Journal of Green Science and Technology, 2018(10), 63(in Chinese).
蔡思颖, 黄碧捷, 桂思琪, 等. 绿色科技, 2018(10), 63.
35 Li Y.Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2016, 18(1), 114(in Chinese).
李渊. 重庆科技学院学报(自然科学版), 2016, 18(1), 114.
36 Sun C, Chen T, Huang Q, et al. Environmental Science and Pollution Research, 2019, 26(9), 8902.
37 Lu T T, Wang J Y, Ye C C,et al. Water Purification Technology, 2015, 34(2), 61(in Chinese).
鲁婷婷, 王婧雅, 叶长城,等. 净水技术, 2015, 34(2), 61.
38 Chen X G,Lv S S,Ye Y,et al. Chinese Chemical Letters,2010,21(1),122.
39 Chen J P, Song G, Liu Z, et, al. Journal of Alloys and Compounds, 2020,833,155072.
40 Xiao J, Zhou S K, Liu X, et al. Materials Reports A:Review Papers, 2020, 34(3), 5023(in Chinese).
肖江, 周书葵, 刘星, 等. 材料导报:综述篇, 2020, 34(3), 5023.
41 Biswajit S, Kumar D S. Environmental Science and Pollution Research , 2012, 19(6), 2212.
42 Bai S.Environmental Science & Technology, 2014, 37(1), 94(in Chinese).
柏松. 环境科学与技术, 2014, 37(1), 94.
43 Khownpurk P, Chandra-Ambhorn W. Journal of the Chinese Institute of Engineers, 2019, 42(5), 411.
44 Totlani K, Mehta R, Mandavgane S A. Chemical Engineering Journal, 2012, 181, 376.
45 Li M, Liu H, Chen T, et al. Science of the Total Environment, 2019, 651, 1020.
46 Cheng D Y, Shao A Y, Du C, et al. Journal of Nanjing Agricultural University, 2019, 42(2), 308(in Chinese).
程德义, 邵爱云, 杜超, 等. 南京农业大学学报,2019,42(2),308.
47 Ye H P, Zhu Q, Du D Y. Bioresource Technology, 2010, 101(14), 5175.
48 Jyotikusum A, Upendra K, Meikap B C. Journal of Environmental Science and Health, Part A, 2019, 54(8), 801.
49 Sun N, Tian W W, Zhang Y, et al. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13), 197(in Chinese).
孙楠, 田伟伟, 张颖, 等. 农业工程学报, 2016, 32(13), 197.
50 Kamari S, Ghorbani F, Sanati A M. Sustainable Chemistry and Pharmacy, 2019, 13, 100153.
51 Pourfadakari S, Jorfi S, Ahmadi M, et al. Data in Brief, 2017,15, 887.
52 Chang S S, Zhang X Y, Wang H B, et al. Environmental Science and Technology, 2019, 32(6), 23(in Chinese).
常帅帅, 张学杨, 王洪波, 等. 环境科技, 2019, 32(6), 23.20050183-20050183-
53 Taha M F. In: Proceedings of the 2012 International Conference on Advanced Material and Manufacturing Science.Beijing, 2012, pp. 224.
54 Song M, Wei Y X, Cai S P, et al. Science of the Total Environment, 2018, 618, 1416.
55 Chrysochoou M, Johnston C, Dahal G. Journal of Hazardous Materials, 2012, 201, 33.
56 Zhou C D, Yang T, Min X Z, et al. Chemical Industry and Engineering Progress, 2020,, 39(10), 4275(in Chinese).
周春地, 阳婷, 闵熙泽, 等. 化工进展, 2020, 39(10), 4275.
57 Zhang Q, Ye X Z, Chen D, et al. Environmental Science and Management, 2019, 44(12), 76(in Chinese).
张棋, 叶雪珠, 陈德, 等. 环境科学与管理, 2019, 44(12), 76.
58 Zhong D L, Zhang Y R, Wang L L, et al. Environmental Pollution, 2018, 243, 1302.
59 Fan Y, Yang R F, Lei Z M, et al. Korean Journal of Chemical Enginee-ring, 2016, 33(4),1416.
60 Xue M D, Shu N W, Xia W. Advanced Meterials Research, 2015, 3702, 825.
61 Nawrot T S, Staessen J A, Roels H A, et al. Biometals, 2010, 23(5), 769.
62 Jiang X Y, Qu J H, Meng X L, et al. Environmental Engineering, 2019, 37(5), 56(in Chinese).
姜星颖, 曲建华, 孟宪林. 环境工程, 2019, 37( 5), 56.
63 Xiang J X, Lin Q T, Cheng S L, et al. Environmental Science and Pollution Research, 2018, 25(14), 14032.
64 Teng H H, Peng X, Gao B.Chemical Industry and Engineering Progress, 2017, 36(2), 602(in Chinese).
滕洪辉, 彭雪, 高彬. 化工进展, 2017, 36(2), 602.
65 Zuo H Q, Liu Y, Zhang Y B, et al. Industrial Water & Wastewater, 2012, 43(4), 58(in Chinese).
左海强, 刘艳, 张彦博, 等. 工业用水与废水, 2012, 43(4), 58.
66 Liu L, Liu Y J, Kong L.Scientific and Technological Innovation, 2019(30), 55(in Chinese).
刘伶, 刘艳杰, 孔丽, 等. 科学技术创新, 2019(30), 55.
67 Ma M Y, Qian H, Jia L L, et al. Guangzhou Chemical Industry, 2018, 46(16), 23(in Chinese).
马孟园, 钱欢, 贾露露, 等. 广州化工, 2018, 46(16), 23.
68 Gong Z Y.Jiangxi Chemical Industry, 2017(4), 24(in Chinese).
公振宇. 江西化工, 2017(4), 24.
69 Malik A, Khan A, Humayun M. Zeitschrift für Physikalische Chemie, 2019, 233(3), 375.
70 Yang W J, Yang Q, Zhang M M, et al. Journal of China West Normal University(Natural Sciences), 2015, 36(3), 267(in Chinese).
杨文娟, 杨琴, 王慢慢, 等. 西华师范大学学报(自然科学版), 2015, 36(3), 267.
71 Liu Q, Chen J L, Zhang Q L, et al. Chemical Research and Application, 2019, 31(8), 1482(in Chinese).
刘琦, 陈嘉磊, 张启灵, 等. 化学研究与应用, 2019, 31(8), 1482.
72 Chaiyasith W C, Kaewjit W, Sananmuang R. Materials Today: Procee-dings, 2019, 17(Pt 4), 1472.
73 Popoola L T, Aderibigbe T A, Yusuff A S, et al. Environmental Quality Management, 2018, 28(2), 63.
74 Mobarak M, Mohamed E A, Selim A Q, et al. Journal of Molecular Li-quids, 2019,273,68.
75 Jiang Z H, Hu D Y. Journal of Molecular Liquids, 2019, 276, 105.
76 da Rocha H D, Reis E S, Ratkovski G P, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020,110, 8.
77 Luyen N T, Linh H X, Huy T Q. Journal of Electronic Materials, 2020, 49(33). 1142.
78 Azevedo A C N, Vaz M G, Gomes R F, et al. Iranian Polymer Journal, 2017, 26(2), 93.
79 Chen S, Qin C X, Wang T, et al. Journal of Molecular Liquids, 2019, 285, 62.
80 Sun Y Z. Rice husk as sorbent for removal of ionic dyes from aqueous solution and study on adsorption mechanism. Master's Thesis, Anhui Normal University, China, 2005(in Chinese).
孙影芝. 稻壳吸附剂去除水体中的离子型染料及其吸附机理研究. 硕士学位论文,安徽师范大学, 2005.
81 Leng L J, Yuan X Z, Zeng G M, et al. Fuel, 2015, 155,77.
82 Santana J A C, Paranhos C M. SN Applied Sciences, 2019, 1(5), 1.
83 Malik A, Khan A, Shah N, et al. Zeitschrift für Physikalische Chemie, 2020, 234(3), 485.
84 Costa J A S, Sarmento V H V, Romo L P C, et al. Environmental Science and Pollution Research International, 2019, 26(25), 25476.
85 Fu Y H, Shen Y F, Zhang Z D, et al. The Science of the Total Environment, 2019, 646, 1567.
86 Li X N, Song Y, Jia M Y.Acta Pedologica Sinica, 2017, 54(6), 1313(in Chinese).
李晓娜, 宋洋, 贾明云, 等. 土壤学报, 2017, 54(6), 1313.
87 Khorram M S, Zhang Q, Lin D L, et al. Journal of Environmental Sciences, 2016, 44(6), 269.
88 Shen Y F, Fu Y H. Materials Today Energy, 2018, 9, 397.
89 Shen Y F. Global Challenges, 2018, 2(12), 1800043.
90 Nassar M Y, Ahmed I S, Raya M A. Journal of Molecular Liquids, 2019, 282, 251.
91 Cheng H R, Sun Y H, Wang X H, et al. Journal of Hazardous Mate-rials, 2020, 392, 122298.
92 Mu H R, Zhang L L, Bai S Q.Chinese Journal of Environmental Engineering, 2015, 9(9), 4239(in Chinese).
穆浩荣, 张玲玲, 白淑琴. 环境工程学报, 2015, 9(9), 4239.
93 Huang Y. Ultrasonic-assisted sol-gel using in synthesis of TiO2-SiO2 composite aerogel and its performance for p-nitrophenol photodegradation application. Master's Thesis, Guangxi University, China, 2019(in Chinese).
黄岩. 超声辅助溶胶—凝胶法制备TiO2-SiO2复合气凝胶及其光降解对硝基苯酚的研究. 硕士学位论文,广西大学, 2019.
94 Mohamed S, Mostafa R A, Ahmed H, et al. Journal of Environmental Management, 2017, 204(Pt 1), 189.
95 Hong T C, Radhika T, Ramalingam R J, et al. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46(5), 741.
96 Lin Y Z, Zhu Y, Li A, et al. Research on Chemical Intermediates, 2020, 46(2), 1405.
97 Sohrabnezhad S,Mooshangaie S D.Materials Science & Engineering B, 2019, 240,16.
98 Meng L, Sun Y, Gong H, et al. New Carbon Materials, 2019, 34(3), 220(in Chinese).
孟亮, 孙阳, 公晗, 等. 新型炭材料, 2019, 34(3), 220.
99 Fatimah I, Said A, Hasanah U A. Bulletin of Chemical Reaction Engineering & Catalysis, 2015, 10(1), 43.
100 Cordoba M C, Matos J, Montaña R, et al. Catalysis Today, 2019, 328, 125.
101 Wang W, Chen H, Fang J J, et al. Applied Surface Science, 2019, 467, 1187.
102 Mohamed S, Mostafa R A, Ahmed H, et al. Journal of Environmental Management, 2017, 204(Pt 1), 189.
103 Lin Y Z, Zhu Y, Li A, et al. Research on Chemical Intermediates, 2020, 46(2), 1405.
104 Hong T C, Radhika T, Ramalingam R J, et al. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46(5), 741.
105 Li K L, Ning P, Li K, et al. Chemical Industry and Engineering, 2019, 36(2), 38(in Chinese).
李坤林, 宁平, 李凯, 等. 化学工业与工程, 2019, 36(2), 38.
[1] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[2] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[3] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[4] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[5] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[6] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[7] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[8] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[9] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[10] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[11] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[12] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[13] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[14] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[15] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed