Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20050167-8    https://doi.org/10.11896/cldb.20050167
  金属与金属基复合材料 |
ATI 718Plus高温合金微观组织与性能研究进展
仉建波1, 李京桉1, 彭远祎1, 夏兴川1,2,*, 刘畅1, 丁俭1, 陈学广1, 刘永长2
1 河北工业大学材料科学与工程学院, 天津 300130
2 天津大学材料科学与工程学院, 天津 300072
Reviews on the Study of Microstructure and Properties of ATI 718Plus Superalloy
ZHANG Jianbo1, LI Jing'an1, PENG Yuanyi1, XIA Xingchuan1,2,*, LIU Chang1, DING Jian1, CHEN Xueguang1, LIU Yongchang2
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
2 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 6351KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ATI 718Plus(以下简称718Plus)是一种基于IN718高温合金改进的时效强化型镍基变形高温合金,已广泛应用于航空发动机的热端零部件。合金最初以锻造态引入,随着航空航天领域对大型复杂零部件需求的提高,锻造态合金已不能满足实际要求,因此在锻造态合金的基础上通过提高Nb含量开发出了铸造718Plus合金,并对其微观组织、焊接性能和拉伸性能开展了研究。锻造态和铸造态合金的化学成分与成型工艺的差异导致其微观组织及性能不同,因此阐明两种合金微观组织与使役性能之间的内在联系具有重要意义。本文综述了近年来锻造态和铸造态718Plus合金的微观组织调控及性能研究进展,包括:元素含量与分布状态对合金微观组织的影响,热处理制度对γ'相及η相分布状态的影响,热变形工艺与合金微观组织的关系,并得到最优热加工参数,总结了服役环境对合金蠕变、疲劳、焊接及抗氧化性能的作用机制,最后分析了合金研究过程中存在的问题及发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仉建波
李京桉
彭远祎
夏兴川
刘畅
丁俭
陈学广
刘永长
关键词:  718Plus合金  化学成分  热变形  热处理制度  加工性能    
Abstract: ATI 718Plus (hereafter referred to as 718Plus) is an age-strengthened nickel-based wrought superalloy according to the improved IN718 superalloy, which has been widely used in hot end components for aero engines. The alloy originally introduced in the wrought state, as the demand for large and complex components in the aerospace sector increased, the wrought alloy could no longer meet the practical requirements, so the cast 718Plus alloy was developed by increasing the Nb content based on the wrought alloy and its microstructure, welding properties and tensile properties were investigated. The chemical composition and forming process of as-wrought and as-cast alloys lead to different microstructures and properties, and it is important to clarify the internal relationship between microstructure and properties of the two alloys. This paper reviews the progress of microstructure control and properties of the wrought and cast 718Plus alloys in recent years, including the influence of element contents and distribution state on the microstructure of the alloys, the function of heat treatment regime on the distribution state of γ' and η phases, and the relationship between hot deformation process and the microstructure of the alloys. As a result, the optimum hot processing parameters are obtained, the mechanism of service environment on creep, fatigue, welding and oxidation resistance of alloy is summarized, and the problems and development trend in the process of alloy research are analyzed eventually.
Key words:  718Plus alloy    chemical composition    hot deformation    heat treatment regime    work ability
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TB31  
  TG146.1  
基金资助: 国家自然科学基金(52175312);河北省高层次人才资助项目(A201902008);河北省自然科学基金(E2019202161);新型钎焊材料与技术国家重点实验室基金(SKLABFMT201804)
通讯作者:  xc_xia@hebut.edu.cn   
作者简介:  仉建波,2018年6月毕业于华北理工大学,获得工学学士学位。现为河北工业大学材料科学与工程学院硕士研究生,主要研究方向为高温合金结构材料。
夏兴川,工学博士(后)、研究员、博士研究生导师;担任中国材料研究学会青年委员会理事;主持国家自然科学基金重点项目课题、国家自然科学基金、中央军委装发部重点基金、国家重点研发计划子课题、河北省军民融合发展专项、河北省重点研发计划、河北省省校科技合作开发资金项目、河北省科技计划项目和横向科技开发项目多项;以第一作者/通讯作者发表SCI期刊论文30余篇。
引用本文:    
仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
ZHANG Jianbo, LI Jing'an, PENG Yuanyi, XIA Xingchuan, LIU Chang, DING Jian, CHEN Xueguang, LIU Yongchang. Reviews on the Study of Microstructure and Properties of ATI 718Plus Superalloy. Materials Reports, 2022, 36(4): 20050167-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050167  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20050167
1 Huang Q Y, Li H K.Superalloy, Metallurgical Industry Press, China, 2000,pp.6(in Chinese).
黄乾尧, 李汉康. 高温合金, 冶金工业出版社, 2000, pp. 6.
2 Ding J, Jiang S, Li Y, et al. Intermetallics, 2018, 98, 28.
3 Wu J, Liu Y C, Li C, et al. Intermetallics, 2019, 109, 48.
4 Wu J, Liu Y C, Li C, et al. Acta Metalica Sinica, 2020, 56 (1), 21(in Chinese).
吴静, 刘永长, 李冲, 等. 金属学报, 2020, 56(1), 21.
5 Wang M Q, Tian C G, Nan Y, et al. Materials Reports A:Review Papers, 2017, 31(10), 72(in Chinese).
王妙全, 田成刚, 南洋, 等. 材料导报:综述篇, 2017, 31(10), 72.
6 Du J H, Zhao G P, Deng Q, et al. Journal of Aeronautical Materials, 2016, 36 (3), 27(in Chinese).
杜金辉,赵光普,邓群,等. 航空材料学报, 2016, 36(3), 27.
7 Wang M Q. In: High Temperature Materials Branch of China Metal Society. Beijing, 2015, pp.42(in Chinese).
王民庆. 中国金属学会高温材料分会. 北京, 2015, pp. 42.
8 Wang M Q, Deng Q, Du J H, et al. Rare Metal Materials and Enginee-ring, 2016, 45(12), 3335(in Chinese).
王民庆, 邓群, 杜金辉, 等. 稀有金属材料与工程, 2016, 45(12), 3335.
9 Ruiz O C, Sjöberg G, Gómez-Acebo T, et al. Superalloy 718 and Derivatives, 2012, pp.689.
10 Peterson B, Krishnan V, Brayshaw D, et al. In: Proceedings of the 7th International Symposium on Superalloy. USA, 2010, pp. 132.
11 Peterson B, Frias D, Brayshaw D, et al. In: Proceedings of the 7th International Symposium on Superalloy. USA, 2010, pp. 787.
12 Zickler G A, Schnitzer R, Radis R, et al. Materials Science and Engineering A, 2009, 523(1-2), 295.
13 Wang M, Du J, Deng, Q, et al. Journal of Alloys and Compounds, 2017, 701, 635.
14 Pickering E J, Mathur H, Bhowmik A, et al. Acta Materialia, 2012, 60(7), 2757.
15 Eurich N C, Bristowe P D. Scripta Materialia, 2014, 77, 37.
16 Stotter C, Sommitsch C, Wagner J, et al. International Journal of Mate-rials Research, 2008, 99(4), 376.
17 Lech S, Kruk A, Rutkowski B, et al. In: European Microscopy Congress: Proceedings, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 1122.
18 Zickler G A, Radis R, Schnitzer R, et al. Advanced Engineering Mate-rials, 2010, 12(3), 176.
19 Alabbad B, Tin S.Materials Characterization, 2019, 151, 53.
20 Burke M G, Miller M K. In:Superalloys 718.USA, 1991, pp. 450.
21 Krakow R, Johnstone D N, Eggeman A S, et al. Acta Materialia, 2017, 130, 271.
22 Lech S, Kruk A, Cempura G, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1453.
23 Decker R F, Freeman J W.Transactions of the American Institute of Mining and Metallurgical Engineers, 1957, 218(2), 277.
24 Hosseini S A, Abbasi, S M, Madar K Z, et al. Materials Chemistry and Physics, 2018, 211, 302.
25 Seyed A H, Seyed M A, Karim Z M, et al. Materials Science and Engineering A, 2018, 712, 780.
26 Wang M, Du J, Deng Q, et al. Materials Science and Engineering A, 2015, 626, 382.
27 Wang M, Deng Q, Du, J, et al. Materials Transactions, 2015, 56(5), 635.
28 Cao W D. In: Superalloy 718 and Derivatives. USA, 2004, pp. 92.
29 Mcdevitt E. In: Superalloy 718 and Derivatives. USA, 2012, pp. 981.
30 Liu X,Xu J, Deem N, et al. Delta, 2005, 10, 100.
31 Kumari G, Boehlert C, Sankaran S, et al. Journal of Materials Enginee-ring and Performance, 2020, 29(6), 3523..
32 Whitmore L, Ahmadi M R, Stockinger M, et al. Materials Science and Engineering A, 2014, 594 (31), 253.
33 Whitmore L, Ahmadi M R, Guetaz L, et al. Materials Science and Enginee-ring A, 2014, 610(29), 39.
34 Whitmore L, Leitner H, Povoden-Karadeniz E, et al. Materials Science and Engineering A, 2012, 534, 413.
35 Zhao W, Dong J X, Zhang M C, et al. Journal of Material Heat Treatment, 2015(1), 5(in Chinese).
赵薇, 董建新, 张麦仓, 等.材料热处理学报, 2015(1), 5.
36 Ahmadi M R, Povoden E, Whitmore L, et al. Materials Science and Engineering A, 2014, 608, 114.
37 Li Y, Li C, Wu J, et al. Materials Letters, 2019, 250, 147.
38 Ding J, Jiang S, Wu Y, et al. Materials Letters, 2018, 211, 5.
39 Wu Y, Liu Y, Li C, et al. Journal of Alloys and Compounds, 2017, 712, 6875.
40 Shi X N, Liu Y Y, Ning Y Q, et al. Rare Metals, 2019(6), 613(in Chinese).
史晓楠, 刘莹莹, 宁永权,等.稀有金属, 2019(6), 613.
41 Chen X, Qi Y G, Shi X N, et al. Rare Metals, 2019,43(12), 1260(in Chinese).
陈曦, 亓耀国, 史晓楠, 等. 稀有金属, 2019,43(12), 1260.
42 Stefan M, Christof S, Daniel H, et al. Materials Science and Engineering A, 2011, 528(11), 3754.
43 Kienl C, León-Cázares F D, Rae C M F, et al. Acta Materialia, 2020, 115473.
44 Kienl C, Casanova A, Messé O, et al. In:Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications. Morgantown, 2018, pp. 413.
45 Asala G, Andersson J, Ojo O A, et al. International Journal of Advanced Manufacturing Technology, 2019, 103(1), 1419.
46 Zhang J B, Wu C J, Peng Y Y, et al. Journal of Alloys and Compounds, 2020,835, 155195.
47 Asala G, Ojo O A.Results in Physics, 2016, 6, 196.
48 Idowu O A, Ojo O A, Chaturvedi M C, et al. Materials Science & Engineering A, 2007, 454-455, 389.
49 Ni T, Dong J.Materials Science and Engineering: A, 2017, 700, 406.
50 Hayes R W, Unocic R R, Nasrollahzadeh M.Metallurgical and Materials Transactions A, 2015, 46(1), 218.
51 Chen K, Dong J, Yao Z, et al. Materials Science and Engineering: A, 2018, 738, 308.
52 Telesman J, Gabb T, Garg A, et al. In: Superalloy 718 and Derivatives. USA, 2008, pp.813.
53 Tsang J, Kearsey R M, Au P, et al. Materials at High Temperatures, 2010, 27(1),207.
54 Kattoura M, Mannava S R, Qian D, et al. International Journal of Fatigue, 2017, 104, 366.
55 Kattoura M, Telang A, Mannava S R, et al. Materials Science and Engineering A, 2018, 711, 364.
56 Unocic K A, Unocic R R, Pint B A, et al. In: Superalloy 718 and Deri-vatives, John Wiley & Sons Ltd., USA,2010, pp. 981.
57 Unocic K A, Pint B A. In: 8th International Symposium on Superalloy 718 and Derivatives. USA, 2014,pp. 671.
58 Li T F.High temperature oxidation and hot corrosion of metals, Chemical Industry Press, China, 2003,pp.71(in Chinese).
李铁藩. 金属高温氧化和热腐蚀. 化学工业出版社,2003, pp. 71.
59 Huang J P. High temperature oxidation behavior of Ni-10Cr-5Al alloy containing rare earth elements. Master's Thesis, Jiangxi University of technology, China, 2017(in Chinese).
黄嘉鹏. 含稀土元素Ni-10Cr-5Al合金高温氧化行为研究. 硕士学位论文, 江西理工大学, 2017.
60 Lech S, Gil A, Cempura G, et al. International Journal of Materials Research, 2019, 110(1), 42.
61 Kruk A, Lech S, Gil A, et al. Corrosion Science, 2020, 169, 108634.
62 Viskari L, Hörnqvist M, Moore K L, et al. Acta Materialia, 2013, 61(10), 3630.
63 Hanning F, Khan A K, Andersson J, et al. Welding in the World, 2020, 64(3), 523.
64 Chen K, Rui S Y, Wang F, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(7), 889.
65 Andersson J, Sjöberg G, Larsson J, et al. In: Superalloy 718 and Derivatives, John Wiley & Sons Ltd., USA, 2010, pp. 439.
66 Seyed A H, Karim Z M, Seyed M A, et al. Materials Science and Engineering A, 2017, 689, 103.
67 Ruiz O C, Soldevilla N. In: 8th International Symposium on Superalloy 718 and Derivatives. John Wileyand Sons Ltd., Pittsburgh, Pennsylvania, USA, 2014, pp. 220.
68 Andersson J, Sjöberg G, Larsson J. In: Proceedings of the 7th International Symposiumon Superalloy 718 and Derivatives, TMS (The Minerals, Metalsand Materials Society), 2010, pp.439.
69 Hosseini S A, Abbasi S M, Madar K Z, et al. Journal of Materials Engineering and Performance, 2018, 27(6), 2815.
70 Andersson J, Sjöberg G, Hönninen H. In: the 3rd International Hot Cracking Workshop. Columbus, Ohio, 2010,pp. 417.
71 Woo I, Nishimoto K, Tanaka K, et al. Welding in the World, 2000, 14(7), 514.
72 Singh S, Andersson J. Welding in the World, 2018, 63(2), 389.
[1] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[2] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[3] 姜英勇, 任亮, 任重, 李文博, 帅嘉欣, 张明耀, 张会轩. 生物可降解PBS聚酯合金的制备与性能调控[J]. 材料导报, 2021, 35(22): 22151-22159.
[4] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[5] 郑浩, 刘丽华, 张中武. 热加工对硫化物及氧化物夹杂的影响[J]. 材料导报, 2021, 35(13): 13168-13176.
[6] 张荣华, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162.
[7] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[8] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[9] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[10] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[11] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[12] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[13] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[14] 文新理, 章清泉, 陈列. 650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状[J]. 材料导报, 2018, 32(13): 2167-2175.
[15] 王文锦, 王克强, 叶深杰, 苗伟俊, 陈忠仁. 非对称嵌段共聚物PI-b-PB对IR/BR并用胶相形态与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 96-100.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed