Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22085-22091    https://doi.org/10.11896/cldb.20080019
  无机非金属及其复合材料 |
煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究
朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛
中国矿业大学(北京)力学与建筑工程学院,北京 100083
Study on Compressive Strength and Frost Resistance of Coal Gangue Fine Aggregate-Slag Cement-based Concrete
ZHU Hongguang, HUO Qingjie, NI Yadong, XU Xiaonan, HANG Zetao, WANG Tao, YANG Sai
School of Mechanics & Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
下载:  全 文 ( PDF ) ( 3568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以煤矸石作细集料复合矿渣制备不同水胶比的混凝土,通过正交试验,研究水胶比、矿渣掺量、煤矸石细集料掺量对混凝土抗压强度、抗冻性能的影响,并探讨影响其力学性能的微观机理。试验结果表明:水胶比和矿渣掺量对混凝土抗压强度影响显著,煤矸石细集料掺量影响较小;矿渣掺量和煤矸石细集料掺量对混凝土抗冻性能影响显著,水胶比影响较小;综合考虑抗冻性能和抗压强度,确定本实验最优配比设计为水胶比0.4~0.45、矿渣掺量30%、煤矸石细集料掺量30%;最后,通过分形理论计算分析SEM图像分形维数变化规律,确定煤矸石细集料-矿渣混凝土分形维数与强度呈负相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱红光
霍青杰
倪亚东
许校男
杭泽涛
王涛
杨赛
关键词:  正交试验  抗压强度  抗冻性能  综合性能  SEM  分形    
Abstract: The concrete with different water cement ratio was prepared with slag as binder material and coal gangue as fine aggregate. The effects of water binder ratio, slag content and coal gangue content on the compressive strength and frost resistance of concrete was studied through orthogonal experiments, and the influence of microscopic mechanism on the mechanical properties was discussed. Results showed that the water binder ratio and slag content had a significant effect on the compressive strength, and the effect of coal gangue as fine aggregate was small. The slag and coal gangue content had a significant effect on the frost resistance of concrete, and the effect of water binder ratio was small. In order to improve the compressive strength and frost resistance comprehensively, the optimal mix proportion was water binder ratio as 0.4—0.45, 30% slag content, and 30% coal gangue as fine aggregate. Moreover, the fractal dimension of the scanning electric morphology (SEM) was calcula-ted based on fractal theory. Results showed that the fractal dimension of coal gangue/slag concrete was negatively related to the strength.
Key words:  orthogonal test    compressive strength    frost resistance    comprehensive performance    SEM    fractal dimension
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU58+2  
基金资助: 国家自然科学基金(51578539)
通讯作者:  zhg@cumtb.edu.cn   
作者简介:  朱红光,中国矿业大学(北京)副教授,越崎青年学者,北京市级虚拟仿真实验项目负责人。2012年博士毕业于中国矿业大学(北京)工程力学专业留校至今。在国内外学术期刊上发表论文50余篇,获8项国家发明及实用新型专利。研究方向主要为固废混凝土的数字化设计与长期性能研究。主持和参与国家重大基础研发计划3项、国家自然科学基金2项、北京市自然科学基金青年项目1项、北京市新型墙材专项基金支持项目1项,国家重点实验室开放课题3项等。
霍青杰,2018年9月至2021年7月就读于中国矿业大学(北京)结构工程专业,硕士研究生,主要从事混凝土耐久性领域的研究。
引用本文:    
朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
ZHU Hongguang, HUO Qingjie, NI Yadong, XU Xiaonan, HANG Zetao, WANG Tao, YANG Sai. Study on Compressive Strength and Frost Resistance of Coal Gangue Fine Aggregate-Slag Cement-based Concrete. Materials Reports, 2021, 35(22): 22085-22091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080019  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22085
1 Peng B X, Li X R, Zhao W H, et al. Fuel, 2018, 217, 427.
2 Gao X J, Ma B G. China Mining Magazine, 2005,14(5),45(in Chinese).
高小建, 马保国. 中国矿业, 2005, 14(5),45.
3 Yimin C, Shuangxi Z, Wensheng Z. Journal of Wuhan University of Technology-Materials Science Edition, 2008, 23(1),12.
4 Qian Q, Man W J, Jia H S. China Mining Magazine, 2015(7),39.
5 Cong X Y, Lu S, Yao Y, et al. Materials & Design, 2016, 97, 155.
6 Meddah M S, Zitouni S, Belaabes S. Construction & Building Materials, 2010, 24(4),505.
7 Yao Y, Wu H, Wang L. Advanced Materials Research, 2011, 287-290,1125.
8 Ma H Q,Yi C,Zhu H G, et al. Materials Reports B: Research Papers, 2018, 32(7), 2390(in Chinese).
马宏强, 易成, 朱红光,等. 材料导报:研究篇, 2018, 32(7), 2390.
9 Dong Z, Xia J, Fan C, et al. Construction & Building Materials, 2015, 100(15),63.
10 Wang L,Wang Z W. Concrete, 2018(3), 153(in Chinese).
王亮, 王志伟.混凝土, 2018(3),153.
11 Song Y,Zhao Y,Zhu B R. Non-Metallic Mines, 2014(1), 28(in Chinese).
宋洋, 赵禹, 祝百茹.非金属矿, 2014(1),28.
12 Li Y,Yang X G,Ma Y, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(9),2729(in Chinese).
李燕, 杨旭光, 马悦,等.硅酸盐通报, 2016, 35(9),2729.
13 Guo J M. Concrete, 2011(7), 56(in Chinese).
郭金敏.混凝土, 2011(7),63.
14 Zhou M,Zhao H M,Wang R, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(1),131(in Chinese).
周梅, 赵华民, 王然,等.硅酸盐通报, 2015, 34(1),131.
15 Mei Z, Yanwei D, Yuzhuo Z, et al. Construction & Building Materials, 2019, 220, 386.
16 Mei Z. Non-Metallic Mines, 2013, 36(1),8.
17 Salguero F, Grande J A, Valente T, et al. Construction & Building Materials,2014,54,363.
18 Fang K T,Ma C X,Li C K. Application of Statistics and Management, 1999(3),43(in Chinese).
方开泰, 马长兴, 李久坤.数理统计与管理, 1999(3),43.
19 Fang K T. Orthogonal and uniform experimental design, Science Press,China, 2001(in Chinese).
方开泰.正交与均匀试验设计.科学出版社, 2001.
20 Ma B G,Dong R Z,Zhang L,et al. Journal of Wuhan University of Technology, 2004, 26(7),17(in Chinese).
马保国, 董荣珍, 张莉,等.武汉理工大学学报, 2004, 26(7),17.
21 Wang Q,Li M Y,Shi M X. Journal of the Chinese Ceramic Society,2014, 42(5),629(in Chinese).
王强, 黎梦圆, 石梦晓.硅酸盐学报, 2014, 42(5),629.
22 Zhang S.Study on hydration character of alkali-activated slag cement. Master's Thesis, Chongqing University,China, 2012(in Chinese).
赵爽. 碱矿渣水泥水化特性研究,硕士学位论文,重庆大学, 2012.
23 Yang H Q,Dong W J,Wang Z H. Journal of Yangtze River Scientific Research Institute, 2005(1),53.
杨华全, 董维佳, 王仲华.长江科学院院报, 2005(1),53.
24 Peng R D,Xie H P,Ju Y, et al. Journal of China University of Mining & Technology, 2004(1),19(in Chinese).
彭瑞东, 谢和平, 鞠杨.中国矿业大学学报, 2004(1),19.
25 Liu H B,Ju Y,Peng R D, et al. Journal of China Coal Society, 2015, 40(8),1820(in Chinese).
刘红彬, 鞠杨, 彭瑞东, 等.煤炭学报, 2015, 40(8),1820.
[1] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[2] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[3] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[4] 王璜琪, 薄艾, 王栋民, 张双成, 吕南. 连续级配集料分形理论的误差分析及求解示例[J]. 材料导报, 2021, 35(z2): 254-258.
[5] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[6] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[7] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[8] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[9] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[10] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[11] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[12] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[13] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[14] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[15] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed