Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22033-22038    https://doi.org/10.11896/cldb.20070170
  无机非金属及其复合材料 |
基于声发射特征参数的玻纤格栅复合梁阻裂机理表征
周圣雄1, 王威娜1,2, 秦煜1,3, 刘佳亮1,2
1 重庆交通大学土木工程学院,重庆 400074
2 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
3 中铁二院重庆勘察设计研究院有限责任公司,重庆 400023
Characterization of Crack Resistance Mechanism of Fiberglass Geogrid Reinforced Composite Beam Based on Acoustic Emission Characteristic Parameters
ZHOU Shengxiong1, WANG Weina1,2, QIN Yu1,3, LIU Jialiang1,2
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 CREEC (Chongqing) Survey, Design and Research Co., Ltd, Chongqing 400023, China
下载:  全 文 ( PDF ) ( 4862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为揭示玻纤格栅对复合梁弯曲开裂行为的阻裂机理,本工作开展基于声发射(AE)技术的带缝水泥混凝土板加铺沥青层结构的三点弯曲试验,通过声发射特征参数对比分析有无玻纤格栅夹层两类复合梁的弯曲断裂过程,探究试件损坏过程中AE参数演化特征,通过RA值和AF值分析了复合梁的断裂模式,并结合分形理论研究玻纤格栅对复合梁弯曲断裂特征的影响。研究结果表明:声发射特征参数可有效识别玻纤格栅的作用时期;玻纤格栅在荷载峰值后逐渐开始承受弯拉荷载,延缓了宏观裂缝的扩展,对复合梁的峰后持荷能力有明显提升作用,但承力时期滞后于沥青加铺对弯曲破坏荷载没有影响;玻纤格栅夹层的存在降低了复合梁拉伸破坏趋势,提高了复合梁弯曲破坏过程中的有序性,使复合梁中的微裂缝从产生、发展以及汇集成宏观裂缝至最终弯曲破坏的变化成为更加有序且渐近的过程,从而使该过程有明显的分形特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周圣雄
王威娜
秦煜
刘佳亮
关键词:  复合梁  声发射  加铺  三点弯曲  玻纤格栅  断裂功  分形    
Abstract: In order to reveal the crack resistance mechanism of the fiberglass geogrid on the bending cracking behavior of the composite beam, an experimental of three-point bending of the composite beam with cement overlay asphalt layer was applied. Study the bending and fracture process of the two types of composite beams with or without fiberglass geogrid interlayer through acoustic emission (AE) characteristic parameters, and explore the evolution characteristics of acoustic emission parameters in the process of specimen damage. The fracture of composite beam was analyzed by calculating the values of RA and AF. The effect of fiberglass geogrid on the bending and fracture characteristics of composite beams was studied through fractal theory. The research results show that the AE characteristic parameters can effectively identify the pe-riod of action of the fiberglass geogrid. The fiberglass geogrid gradually bears the bending and tensile load and delays the propagation of macro cracks, and it can obviously improve the ability of maintain load after peak of the composite beam. The load-bearing period of the fiberglass geogrid lags behind the asphalt overlay, which has no effect on the bending failure load. The fiberglass geogrid improves the orderliness of the bending process of the composite beam, making micro-cracks' change from the generation, development, and the integration of macro-cracks to the final bending failure become a more orderly and asymptotic process of the composite beam, which makes it with obvious fractal feature.
Key words:  composite beam    acoustic emission    overlay    three-point bending    fiberglass geogrid    fracture work    fractal
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  U416.2  
基金资助: 国家自然科学基金(52078091;51978114);重庆市自然科学基金(cstc2020jcyj-msxmX0624)
通讯作者:  wwn0816@yeah.net   
作者简介:  周圣雄,2018年7月本科毕业于重庆交通大学土木工程学院,现为重庆交通大学土木工程学院硕士研究生,主要从事道路结构的研究工作。
王威娜,重庆交通大学副教授、硕士研究生导师,2006年7月本科毕业于长安大学公路学院,2014年7月在长安大学公路学院道路与铁道工程专业取得博士学位,期间获得公派联合培养博士研究生资格,在美国佐治亚理工学院开展学习与研究,主要从事道路材料与结构的研究工作,发表学术论文20余篇。
引用本文:    
周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
ZHOU Shengxiong, WANG Weina, QIN Yu, LIU Jialiang. Characterization of Crack Resistance Mechanism of Fiberglass Geogrid Reinforced Composite Beam Based on Acoustic Emission Characteristic Parameters. Materials Reports, 2021, 35(22): 22033-22038.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070170  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22033
1 Zhou F J, Sun L J. China Civil Engineering Journal,2001,34(3),78(in Chinese).
周富杰,孙立军. 土木工程学报,2001,34(3),78.
2 Fallah S, Khodaii A. Materials and Structures, 2016, 49(5),1705.
3 Qian J S, Chen X R, Zheng Y, et al. Journal of Tongji University (Na-tural Science), 2018, 46(8),1042(in Chinese).
钱劲松, 陈欣然, 郑毅,等. 同济大学学报(自然科学版), 2018, 46(8),1042.
4 Li R K, Cui L L, Zhou G, et al. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(4),46(in Chinese).
李汝凯, 崔立龙, 周刚, 等. 重庆交通大学学报(自然科学版), 2017, 36(4),46.
5 Fu Q L, Wei J G, Wang L Y. China Journal of Highway and Transport: 2020, 33(8),133(in Chinese).
付其林, 魏建国, 王力扬. 中国公路学报, 2020, 33(8),133.
6 Kong L Y. The application on and study of the fiberglass in the reflect crack of road in the northwest area. Master's Thesis, Beijing University of Technology, China,2003(in Chinese).
孔令云. 玻璃纤维格栅在西北地区路面反射裂缝中的应用与研究. 硕士学位论文, 北京工业大学, 2003.
7 Zhou G, Li R K, Wang H M, et al. Journal of China Highway Enginee-ring, 2016, 29(2),16(in Chinese).
周刚, 李汝凯, 王火明, 等. 中国公路学报, 2016, 29(2),16.
8 Li S, Liu Z H, Li Y Z. Journal of Central South University (Science and Technology), 2013(9),294(in Chinese).
李盛, 刘朝晖, 李宇峙. 中南大学学报:自然科学版,2013(9),294.
9 Zhang M D. Fracture characterization of asphalt mixtures based on acoustic emission parameters. Ph.D. Thesis, Jilin University, China,2019(in Chinese).
张萌谡. 基于声发射参数的沥青混合料断裂特性表征方法研究. 博士学位论文, 吉林大学,2019.
10 Sun Z, Behnia B, Buttlar W G, et al. Construction and Building Mate-rials, 2016, 126,913.
11 Behnia B, Buttlar W G, Reis H. Journal of Materials in Civil Enginee-ring, 2017, 29(5),04016294.
12 Jiao Y, Fu L, Shan W, et al. Engineering Fracture Mechanics, 2019, 210,147.
13 Jiao Y, Zhang Y, Zhang M, et al. Engineering Fracture Mechanics, 2019, 211,209.
14 Fu L X. Study on road performance and acoustic emission characteristics of high viscosity modified pervious asphalt mixture. Master's Thesis, Jilin University, China,2018(in Chinese).
符刘旭. 高黏改性型透水沥青混合料路用性能及声发射特性研究. 硕士学位论文, 吉林大学, 2018.
15 Dhakal N, Elseifi M A, Zhang Z. International Journal of Pavement Research & Technology, 2016, 9(3),228.
16 Ling J, Wei F, Gao J, et al. Transportation Research Record, 2019, 2673(6),327.
17 Liu Y Y, Ling T Q, Huang Z H. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5) 966(in Chinese).
刘燕燕,凌天清,黄中文. 重庆交通大学学报(自然科学版),2012,31(5),966.
18 Wang T F, Li Y Y, Xu Y, et al. Geological Science and Technology Information, 2019, 38(4),247(in Chinese).
王腾飞, 李远耀, 徐勇, 等. 地质科技情报, 2019, 38(4),247.
19 Wu C. Experimental study of fractal dimension of acoustic emissions signal on the damage process of reinforced concrete beam. Master's Thesis, Jiangsu University,China, 2016(in Chinese).
吴超. 钢筋混凝土梁损伤过程声发射信号的分形特征试验研究. 硕士学位论文, 江苏大学,2016.
20 Wang C Y, Chang X K, Liu Y L, et al. Rock and Soil Mechanics, 2020, 41(S1),51(in Chinese).
王创业, 常新科, 刘沂琳, 等. 岩土力学, 2020, 41(S1),51.
21 Zheng X L. Study on the characteristics of acoustic emission parameters and relative quiet period of rock-like material with different particle diame-ters during uniaxial compression. Master's Thesis, Jiangxi University of Science and Technology, China,2018(in Chinese).
郑小龙. 不同粒径类岩石材料单轴压缩过程声发射参数及相对平静期特性研究. 硕士学位论文, 江西理工大学, 2018.
22 Zhu S T. Research on acoustic emission characteristics and damage evolution of tantalum-niobium ore tailings cement backfill. Master's Thesis, Jiangxi University of Science and Technology,China, 2019(in Chinese).
朱胜唐. 钽铌矿尾砂胶结充填体声发射特性及其损伤演化研究.硕士学位论文, 江西理工大学, 2019.
[1] 王璜琪, 薄艾, 王栋民, 张双成, 吕南. 连续级配集料分形理论的误差分析及求解示例[J]. 材料导报, 2021, 35(z2): 254-258.
[2] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[3] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[4] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[5] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[6] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[7] 李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
[8] 王珩, 陆采荣, 刘伟宝, 梅国兴, 戈雪良, 杨虎. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(Z2): 255-260.
[9] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[10] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[11] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[12] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[13] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[14] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[15] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed