Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21052-21060    https://doi.org/10.11896/cldb.19080145
  无机非金属及其复合材料 |
基于分形几何思路的超材料结构设计:综述
杨智为, 周涵*
上海交通大学金属基复合材料国家重点实验室,上海 200240
Design of Metamaterial Structures Based on Fractal Geometry: a Review
YANG Zhiwei, ZHOU Han
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 6947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料因具有超越自然材料的物理性质而备受研究者的关注。超材料的性能由结构单元的结构设计和材料体系固有属性所决定。因此,筛选合适的材料体系和优化结构单元的设计是其性能提升的两大重要策略。随着材料体系方面研究的逐渐完善,对结构单元设计的优化是有效提升超材料性能的关键。
传统超材料受到频段窄、结构单一及由此导致的性能欠缺等局限,因此,需要发展更有效的新的超结构设计思路和策略。分形几何结构因具有自相似性、跨尺度对称性、非整数维度特性等独特的几何性质而成为一种重要的超结构设计准则。近年来,以分形结构为中心的设计理念逐渐形成,并应用于超材料的设计之中。
分形几何结构已被广泛应用于电磁学超材料、声学超材料、力学超材料等诸多领域,其带来的优势也日益彰显。分形结构的引入实现了多频、宽带、小型化、集成化等目标,显著提升了超材料多方面的性能,在超材料设计及应用中显示出巨大的潜力。
本文归纳了分形结构在超材料结构单元设计中的应用现状,首先介绍了分形几何的概念,举例分析了分形超材料在不同应用领域中的优势及贡献,总结了分形超材料常用的合成方法,最后对分形超材料面临的主要挑战及未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨智为
周涵
关键词:  分形几何  超材料  结构设计  宽带  小型化    
Abstract: Metamaterials have attracted worldwide attention because their physical properties can be designed to be beyond natural materials. Generally, the performance of metamaterials depends on the design of structural units and the properties of the material systems. Therefore, fin-ding the appropriate materials and optimizing the structural units are two main ways to improve the performance of metamaterial. With the gradual improvement of material system research, how to optimize the design of structural units effectively has become the key to improve the perfor-mance of metamaterials.
Traditional metamaterials has been limited a lot by their drawbacks such as narrow frequency band, simple units' structures and poor behavior, therefore, it is urgent to propose a novel design strategy. Fractal geometry becomes the ideal solution due to its unique geometric properties such as self-similarity, cross-scale symmetry and non-integer dimension. Recently, the design concept centered on fractal structure formed gradually and has been applied to the design of metamaterials.
Fractal geometry has been widely used in the fields of electromagnetic metamaterials, acoustic metamaterials, mechanical metamaterials and so on and the advantages brought by fractal structures have already been manifested. The introduction of the fractal structure not only achieves the goals such as broadband, miniaturization and integration, but also significantly improves the performance of the metamaterials. The application of fractal geometry shows great potential.
This review summarized the current status of the design and application of fractal metamaterials in different fields. First, we introduced the concept of fractal geometry. Then, we analyzed the advantages and contributions of fractal metamaterials in different application fields by examples and summarized common synthesis methods of fractal metamaterials. Finally, we prospected the main challenges of fractal metamaterials and their development directions in the future.
Key words:  fractal geometry    metamaterial    structure design    broadband    miniaturization
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51772191);上海市自然科学基金(17ZR1441100)
作者简介:  杨智为,2017年6月毕业于上海交通大学,获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,在周涵老师的指导下进行研究。目前主要研究领域为分形超材料。
周涵,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013年在日本国立物质材料研究所叶金花教授课题组从事博后工作,2013—2014年在德国马普所胶体与界面研究所Markus Antonietti教授团队从事洪堡学者研究。主要研究方向为仿生材料与智能材料、超材料、热调控材料。
引用本文:    
杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
YANG Zhiwei, ZHOU Han. Design of Metamaterial Structures Based on Fractal Geometry: a Review. Materials Reports, 2020, 34(21): 21052-21060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080145  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21052
[1] Zheludev N I, Kivshar Y S. Nature Materials, 2012, 11(11), 917.
[2] Yu N, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333.
[3] Kamali S M, Arbabi A, Arbabi E, et al.Nature Communications, 2016, 7, 11618.
[4] Wang X, Luo X, Zhao H, et al.Applied Physics Letters, 2018, 112(2), 021901.
[5] Colombi A, Colquitt D, Roux P, et al.Scientific Reports, 2016, 6, 27717.
[6] Meza L R, Phlipot G, Portela C M, et al.Acta Materialia, 2017, 140, 424.
[7] Krzysztofik W J.Microwave Review, 2013, 19(2), 3.
[8] Falconer K J.Fractal geometry: mathematical foundations and applications, USA, Wiley, 2003.
[9] Billon K, Zampetakis I, Scarpa F, et al.Composite Structures, 2017, 160, 1042.
[10] Tang Y, Yin J.Extreme Mechanics Letters, 2017, 12, 77.
[11] Venneri F, Costanzo S, Massa G D.IEEE Antennas & Wireless Propagation Letters, 2018, 17(2), 255.
[12] Man X, Liu T, Xia B, et al. Journal of Sound and Vibration, 2018, 423, 322.
[13] Ma J J, Tong W H, Shi K, et al.Progress in Electromagnetics Research Letters, 2014, 49, 73.
[14] Huang D, Kang F, Dong C, et al.Applied Physics A, 2014, 115(2), 627.
[15] Faruque M R I, Hasan M M, Islam M T.Applied Physics A, 2018, 124(2), 127.
[16] Li S, Cao X, Gao J, et al.In: Conference Record of the 2015 IEEE International Wireless Symposium. Shenzhen, China, 2015, pp. 1.
[17] Ma Y, Zhang H, Li Y, et al.Journal of the Optical Society of America B, 2014, 31(2), 325.
[18] Fan Y N, Cheng Y Z, Nie Y, et al.Chinese Physics B, 2013, 22(6), 067801.
[19] Jiang H, Xue Z, Li W, et al. LET Microwaves Antennas & Propagation, 2016, 10(11), 1141.
[20] Kundu D, Mohan A, Chakraborty A.Microwave and Optical Technology Letters, 2015, 57(5), 1072.
[21] Munaga P, Ghosh S, Bhattacharyya S, et al.Microwave and Optical Technology Letters, 2016, 58(2), 343.
[22] Kenney M, Grant J, Shah Y D, et al.ACS Photonics, 2017, 4 (10), 2604.
[23] Liu G, Xu L, Wu Z. International Journal of Antennas and Propagation, 2013, 2013, 1.
[24] Kubacki R, Lamari S, Czyhewski M, et al. International Journal of Antennas and Propagation, 2017, 2017, 1.
[25] De Nicola F, Puthiya Purayil N S, Spirito D, et al.ACS Photonics, 2018, 5(6), 2418.
[26] Xu H X, Wang G M, Qi M Q.IEEE Transactions on Magnetics, 2013, 49(4), 1526.
[27] Mohammad A, Bal V, Hwang S C, et al. IET Microwaves, Antennas & Propagation, 2018, 12(14), 2241.
[28] Song G Y, Cheng Q, Huang B, et al.Applied Physics Letters, 2016, 109(13), 131901.
[29] Zhao X, Liu G, Zhang C, et al.Applied Physics Letters, 2018, 113, 074101.
[30] Song G Y, Huang B, Dong H Y, et al.Scientific Reports, 2016, 6,35929.
[31] Liu J, Li L, Xia B, et al.International Journal of Solids and Structures, 2018, 132-133, 20.
[32] Xia B, Li L, Liu J, et al.Journal of Vibration and Acoustics, 2018, 140(1), 011011.1.
[33] Ding J, Fan L, Zhang S Y, et al.Scientific Reports, 2018, 8(1), 1481.
[34] Meza L R, Zelhofer A J, Clarke N, et al.Proceedings of the National Academy of Sciences, 2015, 112(37), 11502.
[35] Du Q, Zeng Y, Xu Y, et al.Journal of Physics D: Applied Physics,2018, 51, 105104.
[36] Smolyaninov I I, Smolyaninova V N.Physica C: Superconductivity and Its Applications, 2017, 535, 20.
[37] Moeini S, Cui T J.Annals of Physics, 2019, 531, 1800134.
[38] Papadopoulos A, Skoulas E, Mimidis A, et al. Advanced Material, 2019, 31, 1901123.
[39] Fang Z, Chen H, An D, et al. Scientific Reports, 2018, 8, 9696.
[40] Zhai Y, Ma Y, David S N, et al. Science, 2017, 355(6329), 1062.
[41] Kihara N, Sakai O.Applied Sciences, 2018, 8(8), 1310.
[42] Denis G, Eugenio C, Angelo B, et al.ACS Photonics, 2018, 5(8), 3408.
[1] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[2] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[3] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[4] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[5] 文立伟, 王若舟, 谢飞. 通过调节工艺参数控制热熔法制备的自动铺丝预浸纱的展开质量[J]. 材料导报, 2019, 33(Z2): 599-603.
[6] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[7] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
[10] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[11] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[12] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[13] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[14] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[15] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed