Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4230-4234    https://doi.org/10.11896/j.issn.1005-023X.2018.24.004
  无机非金属及其复合材料 |
影响电阻膜型超材料吸波体吸收特性的材料参数
高海涛, 王建江, 侯永申, 李泽
陆军工程大学石家庄校区先进材料研究所,石家庄 050003
Effect of Material Parameters on Absorbing Properties of the Metamaterial Absorber Based on Resistance Films
GAO Haitao, WANG Jianjiang, HOU Yongshen, LI Ze
Advanced Material Institute, Army Engineering University, Shijiazhuang 050003
下载:  全 文 ( PDF ) ( 1516KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过改变电阻膜型超材料吸波体单元图案形状对吸波性能的影响有限,当超材料吸波体的结构单元参数一旦确定时,超材料的吸收频率和吸收强度就基本确定。但是优化电阻膜型超材料的材料参数能够改善其吸波性能。本研究从电阻膜型超材料吸波体的自身材料构成出发,分析和讨论了电阻膜方阻值、介质层的介电常数和厚度三种材料参数对超材料吸波体吸波性能的影响规律,分析了产生这种现象的机理和原因,为电阻膜型超材料吸波体的设计及优化提供参考和依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高海涛
王建江
侯永申
李泽
关键词:  超材料吸波体  材料参数  电阻膜方阻  介电常数  介质厚度    
Abstract: The effect of changing the cell pattern of the metamaterial absorbers based on resistance films on absorbing material was limited. The absorbing frequency and intensity of the metamaterial absorbers were basically determined when the structure parameters were confirmed. However, the absorbing properties can be improved by optimizing the material parameters of the absor-bers. Based on the unique structure of metamaterial absorbers, several material parameters were analyzed and discussed in this article, such as the sheet resistivity of the resistance films, the dielectric constant and thickness of the dielectric substrate. The influence of these material parameters on absorbing performance was studied, and the mechanism and reason of this phenomenon were also analyzed. This research aimed to provide a reference for the design and optimization of the metamaterial absorbers.
Key words:  metamaterial absorbers    materials parameters    sheet resistivity    dielectric constant    dielectric thickness
                    发布日期:  2019-01-23
ZTFLH:  TB34  
通讯作者:  王建江:通信作者,男,教授,主要从事热加工技术的研究 E-mail:JJWang63@heinfo.net   
作者简介:  高海涛:男,1989年生,博士研究生,主要从事吸波材料的研究 E-mail:gaohaitao12y1034@163.com
引用本文:    
高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
GAO Haitao, WANG Jianjiang, HOU Yongshen, LI Ze. Effect of Material Parameters on Absorbing Properties of the Metamaterial Absorber Based on Resistance Films. Materials Reports, 2018, 32(24): 4230-4234.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.004  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4230
1 Gao H T, Wang J J, Xu B C, et al. The research status and ten-dency of sandwich metamaterial absorbers and its design optimization[J].Materials Review A: Review Papers,2017,31(2):15(in Chinese).
高海涛,王建江,许宝才,等.“三明治”型超材料吸波体及其设计优化的研究现状[J].材料导报:综述篇,2017,31(2):15.
2 Zhou W C, Wang P G, Wang N, et al. Microwave metamaterial absorber based on multiple square ring structures[J].AIP Advances,2015,5:117109.
3 Zhang Y, Zhang B Z, Duan J P, et al. Application of metamaterial in perfect absorber[J].Journal of Materials Engineering,2016,44(11):120(in Chinese).
张勇,张斌珍,段俊萍,等.超材料在完美吸波器中的应用[J].材料工程,2016,44(11):120.
4 Zhang J N, Zhang B, Shen J L. Absorption modulation method of terahertz metamaterial[J].Laser & Optoelectrictronics Progress,2016,53(11):110002(in Chinese).
张建娜,张波,沈京玲.太赫兹超材料的吸收调制方法[J].激光与光电子学进展,2016,53(11):110002.
5 Minyeong Y, Hyung K K, Sungjonn L. Angular and polarization insensitive metamaterial absorber using subwavelength unit cell in multilayer technology[J].IEEE Antennas and Wireless Propagation Letters,2016,15:414.
6 Lin B Q, Wei W, Da X Y, et al. A novel ultra-broad-band metamaterial absorber based on multilayer resistance films[J].Acta Electronica Sinica,2014,42(3):607(in Chinese).
林宝勤,魏伟,达新宇,等.一种基于多层电阻膜的超宽带超材料吸波体[J].电子学报,2014,42(3):607.
7 Soheilifar M R. Design, franrication, and characterization of scaled and stacked layers metamaterial absorber in microwave region[J].Microwave and Optical Technology Letters,2016,58(5):1187.
8 Wang B X, Zhai X, Wang G Z, et al. Frequency tunable metamaterial absorber at deep-subwavelength scale[J].Optical Materials Express,2015,5(2):227.
9 Xu Z C, Gao R M, Ding C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber[J].Optical Materials,2015,42:148.
10 Pang Y Q. The theory and design of metamaterial abaorbers[D]. Changsha: National University of Defense Technology,2015(in Chinese).
庞永强.电磁吸波超材料理论与设计研究[D].长沙:国防科技大学,2015.
11 Guo F, Du H L, Qu S B, et al. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate[J].Acta Physica Sinica,2015,64(7):077801(in Chinese).
郭飞,杜红亮,屈绍波,等.基于磁电介质混合型基体的宽带超材料吸波体的设计与制备[J].物理学报,2015,64(7):077801.
12 Chen H T. Semiconductor activated terahertz metamaterials[J].Frontiers of Optoelectronics,2015,8(1):27.
13 Ao T H, Xu X D, Huang R, et al. Control of terahertz response properties of metamaterials by dielectric layer[J].Journal of Infrared and Millimeter Waves,2015,34(3):333(in Chinese).
敖天宏,许向东,黄锐,等.介质层对超材料太赫兹响应特性的控制规律[J].红外与毫米波学报,2015,34(3):334.
14 Yuan W, Yang J, Wang Y L, et al. Recent advances in broadband metamaterial absorbers[J].Materials Review A: Review Papers,2016,30(11):104(in Chinese).
院伟,杨进,王一龙,等.宽带吸波材料的研究进展[J].材料导报:综述篇,2016,30(11):104.
[1] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[2] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[3] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[4] 杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
[5] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[6] 刘元军, 刘国熠, 赵晓明. 滑石粉涂层复合材料的制备及其介电性能和电导率*[J]. 《材料导报》期刊社, 2017, 31(18): 28-32.
[7] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed