Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 137-142    https://doi.org/10.11896/j.issn.1005-023X.2017.07.021
  先进结构复合材料 |
导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应
杨文彬1,2,张凯3,廖治强1,程金旭1,谢长琼1,吴菊英3,范敬辉3
1 西南科技大学材料科学与工程学院,四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地, 绵阳 621010;
2 四川大学高分子材料工程国家重点实验室, 成都 610065;
3 中国工程物理研究院总体工程研究所, 绵阳 621010
Double Percolation Effect in Thermally Conductive and Electrically Insulating h-BN/MVQ/EVATernaryComposite*
YANG Wenbin1,2, ZHANG Kai3, LIAO Zhiqiang1, CHENG Jinxu1,XIE Changqiong1, WU Juying3, FAN Jinghui3
1 State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of MaterialsScience and Engineering,Southwest University of Science and Technology, Mianyang 621010;
2 State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065;
3 Institute of System Engineering, China Academy of Engineering Physics, Mianyang 621010
下载:  全 文 ( PDF ) ( 1692KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将h-BN加入到MVQ和EVA混合物中制备导热绝缘h-BN/MVQ/EVA复合材料,SEM结果表明h-BN选择性分布在EVA,与杨氏方程理论一致。h-BN/MVQ/EVA复合材料中的双逾渗效应,有助于力学性能和导热性能的提升。h-BN/MVQ/EVA复合材料的热导率与h-BN含量和MVQ/EVA比值有关。当EVA质量分数为30%时,h-BN/MVQ/EVA复合材料热导率的相对值最大。h-BN/MVQ/EVA复合材料的拉伸强度和断裂伸长率与EVA含量有关,随着EVA和h-BN含量的增加,复合材料的介电常数降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文彬
张凯
廖治强
程金旭
谢长琼
吴菊英
范敬辉
关键词:  热导率  双逾渗  介电常数  六方氮化硼/MVQ/EVA  绝缘    
Abstract: Abstract|Hexagonal boron nitride (h-BN) was added into polymer blends of methyl-vinyl-silicone rubber (MVQ) and ethy-lene-vinyl-acetate copolymer (EVA) to prepare thermally conductive and electrically insulating composites by melt processing me-thod. According to Young’s equation, the wettability coefficient points out that the dispersion of h-BN in EVA is thermodynamically more favorable than in MVQ. The result of SEM showed that h-BN was selectively located in EVA. There existed double percolation effect in h-BN/MVQ/EVA ternary composites, which resulted in promoting for both mechanical properties and thermal conductivity. The thermal conductivity of h-BN/MVQ/EVA composites were related with h-BN content and EVA/MVQ ratio. When EVA content was 30 wt% in the matrix blend, the relatively increased rate of thermal conductivity of h-BN/MVQ/EVA composites was the highest. The tensile strength and the elongation at break were mainly related with the EVA content in polymer matrix. The increa-sing amount of EVA and h-BN in the composites resulted in a decrease in dielectric constant.
Key words:  thermal conductivity    double percolation    dielectric property    h-BN/MVQ/EVA    electrical insulation
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB33  
基金资助: *国家自然科学基金委员会-中国工程物理研究院联合基金(U1530102);四川省科技厅应用基础研究项目(2017JY0149);高分子材料工程国家重点实验室开放课题(sklpme2016-4-33);核废物与环境安全国防重点学科实验室开放基金(15kffk08)
作者简介:  杨文彬:男,1971年生,博士,教授,主要研究方向为有机-无机纳米复合材料E-mail:yangwbscu@sina.com
引用本文:    
杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
YANG Wenbin, ZHANG Kai, LIAO Zhiqiang, CHENG Jinxu,XIE Changqiong, WU Juying, FAN Jinghui. Double Percolation Effect in Thermally Conductive and Electrically Insulating h-BN/MVQ/EVATernaryComposite*. Materials Reports, 2017, 31(7): 137-142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.021  或          http://www.mater-rep.com/CN/Y2017/V31/I7/137
1 Aoyagi Y, Leong C K, Chung D D L. Polyol-based phase-change thermal interface materials[J].J Electr on Mater,2006,35(3):416.
2 Zhou W Y, et al. Thermally conductive silicone rubber reinforced with boron nitride particle[J]. Polym Compos,2007,28(1):23.
3 Zhou W Y, Qi S H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochim Acta,2007,452(1):36.
4 Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochim Acta,2005,430:155.
5 Gaier J R, Yodervandenberg Y, Berkebile S, et al. The electrical and thermal conductivity of woven pristine and intercalated graphite fiber-polymer composites[J]. Carbon,2003,41(12):2187.
6 Xu Y, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites A: Appl Sci Manuf,2001,32(12):1749.
7 Zhou W Y, et al. Thermal properties of heat conductive silicone rubber filled with hybrid fillers[J]. J Compos Mater,2008,42(2):173.
8 Zhou W Y, Qi S H, Tu C C, et al. Novel heat-conductive composite silicone rubber[J]. J Appl Polym Sci,2007, 104(4):2478.
9 Chung D D L. Thermal interface materials[J]. J Mater Eng Perform,2001,10(1):56.
10 Zhou W Y, Qi S H, Tu C C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber[J]. J Appl Polym Sci,2007,104(2):1312.
11 Ng H Y, Lu X, Lau S K. Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic compo-sites filled with boron nitride and carbon fiber[J]. Polym Compos,2005,26(1):66.
12 Yuan F Y, Zhang H B, Li X, et al. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites[J]. Composits A: Appl Sci Manuf,2013,53:137.
13 Radhakrishnan C K, Kumari P, Sujith A, et al. Dynamic mechanical properties of styrene butadiene rubber and poly (ethylene-co-vinyl acetate) blends[J]. J Polym Res,2008,15(2):161.
14 Mokrini A, Huneault M A, Shi Z Q, et al. Non-fluorinated proton-exchange membranes based on melt extruded SEBS/HDPE blends[J]. J Membr Sci,2008,325(2):749.
15 Phelan P E, Niemann R C. Effective thermal conductivity of a thin, randomly oriented composite material[J]. J Heat Transf,1998,120(4):971.
16 Mallette J G, Márquez A, Manero O, et al. Carbon black filled PET/PMMA blends: Electrical and morphological studies[J]. Polym Eng Sci,2000,40(10):2272.
17 Oss C J V, Good R J, Chaudhury M K. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir,1988,4(4):884.
18 Rathod N, et al. The effect of surface energy of boron nitride on polymer processability[J]. Polym Eng Sci,2004,44(8):1543.
19 Xu J, Wong C P. Dielectric behavior of ultrahigh-k carbon black composites for embedded capacitor applications[C]// Proceed- Electron Components Technology Conference.2012.
20 Jeong Y G, et al. Segmental motions and associated dynamic mechanical thermal properties of a series of copolymers based on poly(hexamethylene terephthalate) and poly(1,4-cyclohexylenedimethy-lene terephthalate)[J]. Macromol Res,2006,14(4):416.
21 Kaboorani A, et al. Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives[J]. J Ind Eng Chem,2012,18(3):1076.
22 Nakamura Y, Yamaguchi M, Okubo M, et al. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica[J]. J Appl Polym Sci,1992,45(45):1281.
23 Yang T I, Kofinas P. Dielectricproperties of polymer nanoparticle composites[J]. Polymer, 2007,48(3):791.
[1] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[2] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[3] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[4] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[5] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[6] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[7] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[8] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[9] 罗学禹, 刘立柱. 防水用聚脲绝缘涂料的制备及性能研究[J]. 材料导报, 2018, 32(16): 2723-2727.
[10] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[11] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[12] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[13] 田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
[14] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[15] 刘元军, 刘国熠, 赵晓明. 滑石粉涂层复合材料的制备及其介电性能和电导率*[J]. 《材料导报》期刊社, 2017, 31(18): 28-32.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed