Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2112-2117    https://doi.org/10.11896/j.issn.1005-023X.2018.12.032
  计算模拟 |
气凝胶复合材料真空绝热板的热导率计算及优化
梁玉莹1,吴会军1,2,杨建明1,2,唐兰1
1 广州大学土木工程学院,广州 510006;
2 广州大学建筑节能研究院,广州 510006
Calculation and Optimization of Thermal Conductivity of Vacuum Insulation Panels with Aerogel Composite Cores
LIANG Yuying1,WU Huijun1,2,YANG Jianming1,2,TANG Lan1
1 School of Civil Engineering, Guangzhou University, Guangzhou 510006;
2 Institute of Building Energy Efficiency, Guangzhou University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 4092KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用常压干燥和抽真空工艺制备了气凝胶复合材料真空绝热板,基于一维稳态导热建立了气凝胶复合材料真空绝热板热导率的理论计算模型,研究了气凝胶密度和纤维含量对热导率的影响。结果表明,气凝胶复合材料真空绝热板的热导率随着气凝胶密度的增大而增大,随着纤维含量的增大呈现先减小后增大的抛物线型趋势,因此在某一最优的纤维含量下气凝胶复合材料真空绝热板具有最小的热导率。当气体压力为1 Pa、103 Pa和105 Pa,对应的纤维含量分别为7.3%、7.0%和2.5%(体积分数,下同)时,真空绝热板具有最小的热导率,分别为3.5 mW·m-1·K-1、3.8 mW·m-1·K-1和15.8 mW·m-1·K-1。研究结果可用于指导气凝胶复合材料真空绝热板的设计与性能优化,促进气凝胶复合材料真空绝热板在建筑保温领域的应用。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁玉莹
吴会军
杨建明
唐兰
关键词:  气凝胶  真空  绝热  热导率  优化    
Abstract: Vacuum insulation panels with aerogel composite cores were prepared via techniques of ambient pressure drying and outgassing vacuum. Based on one-dimensional steady heat transfer, a theoretical model was built to predict the thermal conductivity of vacuum insulation panels with aerogel composite cores. The effects of aerogel density and fiber content on the thermal conductivities were investigated. The results indicated that the thermal conductivities increased with the increase of aerogel density. The thermal conductivities decreased firstly and then increased, with the increase of fiber content, with a minimum thermal conductivity at the optimal fiber content. For example, the optimal fiber contents were 7.3vol%,7.0vol% and 2.5vol% at the gas pressures of 1 Pa,103 Pa and 105 Pa respectively, and the corresponding minimum thermal conductivities, 3.5 mW·m-1·K-1,3.8 mW·m-1·K-1 and 15.8 mW·m-1·K-1 can be achieved respectively, which presented ultralow thermal conductivities of vacuum insulation panels with aerogel composite cores. Those optimized results could provide guidance for the structure design and properties optimization of vacuum insulation panels with aerogel composite cores, and thereby promoting their application as building thermal insulator.
Key words:  aerogel    vacuum    thermal insulation    thermal conductivity    optimization
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TB124  
基金资助: 国家自然科学基金(51678167);广东省自然科学杰出青年基金(S2013050014139);广东省教育厅重大科研项目(2016KZDXM035)
作者简介:  梁玉莹:女,1992年生,硕士,研究方向为建筑热工与节能 吴会军:通信作者,1978年生,博士,研究员,主要从事隔热材料、建筑节能方面的研究 E-mail: wuhuijun@tsinghua.org.cn
引用本文:    
梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
LIANG Yuying,WU Huijun,YANG Jianming,TANG Lan. Calculation and Optimization of Thermal Conductivity of Vacuum Insulation Panels with Aerogel Composite Cores. Materials Reports, 2018, 32(12): 2112-2117.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.032  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2112
1 Collins T J. Review of the twenty-three year evolution of the first university course in green chemistry: Teaching future leaders how to create sustainable societies[J]. Journal of Cleaner Production,2017,18(140):93.
2 Air-conditioning engineers. 2015 ASHRAE handbook: Heating, ventilating, and air-conditioning applications[M]. Ashrae,2015.
3 Schiavoni S, D’Alessandro F, Bianchi F, et al. Insulation materials for the building sector: A review and comparative analysis[J]. Renewable & Sustainable Energy Reviews,2016,62: 988.
4 Kaln S S E, Jelle B P. Vacuum insulation panel products: A state-of-the-art review and future research pathways[J]. Applied Energy,2014,116(3):355.
5 Cuce E, Cuce P M, Wood C J, et al. Toward aerogel based thermal superinsulation in buildings: A comprehensive review[J]. Rene-wable & Sustainable Energy Reviews,2014,34(3):273.
6 Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas—A review[J]. Energy Buildings,2012,54(37):320.
7 Wang S X, Walliman N, Ogden R, et al. VIPs and their applications in buildings: A review[J]. Construction Materials,2007,160(4):145.
8 Caps R, Beyrichen H, Kraus D, et al. Quality control of vacuum insulation panels: Methods of measuring gas pressure[J]. Vacuum,2008,82(7):691.
9 ASTM C1484-10, Standard specification for vacuum insulation pa-nels[S]. ASTM Intstruction, West Conshohoken, United States,2010.
10 Di X B, Gao Y M, Bao C G, et al. Optimization of glass fiber based core materials for vacuum insulation panels with laminated aluminum foils as envelopes[J]. Vacuum,2013,97: 55.
11 Alam M, Singh H, Limbachiya M C. Vacuum insulation panels (VIPs) for building construction industry-A review of the contemporary developments and future directions[J]. Applied Energy,2011,88(11):3592.
12 Kan A K, Meng C, Guo Z P, et al. Modeling and measurement of effective thermal conductivity of vacuum insulation panels[J]. Chinese Journal of Vacuum Science and Technology,2016,36(8):935(in Chinese).
阚安康,孟闯,郭志鹏,等.真空绝热板导热系数预测模型及实验研究[J].真空科学与技术学报,2016,36(8):935.
13 Li C, Li B, Pan N, et al. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel[J]. Energy Buildings,2016,125:298.
14 Yang J M,Wu H J, Zhong Z K, et al. Calculation and optimization of thermal conductivity of fused silica fiber/aerogel composites[J].Materials Review B: Research Papers,2016,30(10):139(in Chinese).
杨建明,吴会军,钟支葵,等.石英玻璃纤维/气凝胶复合材料的热导率计算及优化[J].材料导报:研究篇,2016,30(10):139.
15 Liao Y D, Wu H J, Ding Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology,2012,63:445.
16 Simmler H, Brunner S, Heinemann U, et al. Vacuum insulation panels: Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A)[J]. Final Report for the IEA/ECBCS Annex,2005,39:38.
17 Wang M R, Pan N. Predictions of effective physical properties of complex multiphase materials[J]. Materials Science and Engineering R: Reports,2008,63(1):1.
18 Zeng S O, Hunt A, Greif R, et al. Geometric structure and thermal conductivity of porous medium silica aerogel[J]. Journal of Heat Transfer,1995,117(4):1055.
19 Yang J M, Wu H J, Wang M R, et al. Predicting thermal conducti-vity of fiber-reinfored aerogel composite materials[J]. Materials Review A: Review Papers,2015,29(11):124(in Chinese).
杨建明,吴会军,王沫然.预测纤维增强气凝胶复合材料热导率的研究进展[J].材料导报:综述篇,2015,29(11):124.
20 Wei G S, Liu Y S, Zhang X X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials[J]. International Journal of Heat and Mass Transfer,2011,54(11-12):2355.
21 Shi X J, Zhang R F, He S, et al. Synthesis and heat insulation performance of glass fiber reinforced SiO2 aerogel composites[J]. Journal of the Chinese Ceramic Society,2016,44(1):129(in Chinese).
石小靖,张瑞芳,何松,等.玻璃纤维增韧SiO2气凝胶复合材料的制备及隔热性能[J].硅酸盐学报,2016,44(1):129.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[3] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[4] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[5] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[6] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[7] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[8] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[9] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[10] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[11] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[12] 张雪飞, 白景元, 管仁国, 刘燕, 周天国. 利用几何优化的搅拌设备改善半固态搅拌法制备的B4Cp/A356复合材料的颗粒分布均匀性[J]. 材料导报, 2019, 33(2): 298-303.
[13] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[14] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[15] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed