Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2966-2975    https://doi.org/10.11896/cldb.18070088
  高分子与聚合物基复合材料 |
正渗透膜材料及其制备方法的研究进展
孙娜,王铎,汪锰
中国海洋大学化学化工学院,青岛 266100
Research Progress of Forward Osmosis Membrane Materials and Their Preparation Methods
SUN Na, WANG Duo, WANG Meng
College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100
下载:  全 文 ( PDF ) ( 21376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 正渗透(FO)技术作为一种新的、极具潜力的膜分离技术,以低能耗、低污染的优势得到了人们的广泛关注。但缺乏性能优异的正渗透膜是阻碍其发展的一个重要因素。到目前为止,研究人员在正渗透膜材料方面进行了大量的研究工作,并在膜结构的优化、寻找新型膜材料方面都取得了长足的进步。常见的正渗透膜材料如醋酸纤维素、芳香聚酰胺及聚苯并咪唑等虽然在正渗透过程中得到了广泛的应用,但这几种膜材料也存在较突出的缺点,比如:醋酸纤维素膜容易水解、耐酸碱性差,聚酰胺类复合膜的结垢倾向较高、耐氯性较差,聚苯并咪唑膜的韧性较差、价格较高。因此,开发新型的正渗透膜材料,提高膜性能对推动正渗透技术的发展具有重要的意义。
   膜结构的优化对提高FO膜的性能至关重要,而优化分离层和支撑层结构是优化膜结构的主要途径。纳米粒子由于具有优异的抗污染性和亲水性,在正渗透过程中得到了应用。研究者们通过将氧化石墨烯等纳米粒子添加到FO膜的分离层中来提高膜表面的亲水性,从而使FO膜性能得到改善。除此之外,层层自组装技术、双皮层结构等也被用来对膜的分离层进行优化,使膜的性能得到提高。由于发生在支撑层中的内浓差极化(ICP)现象是影响正渗透性能的主要因素,因此优化膜的支撑层结构是提高膜性能的重要途径。研究者通过提高支撑层亲水性、降低支撑层厚度以及改善孔结构等对膜的支撑层进行优化。选择亲水性好的支撑层材料、对支撑层进行表面改性等方法都可使支撑层的亲水性得到提高。厚度小、孔隙率高且曲折度小的孔结构及机械强度高、抗污染性能好等优点是高性能FO膜必不可少的条件。
   本文综述了近几年来正渗透膜制备方面的研究进展,通过列举几种常见的正渗透膜以及一些新型正渗透膜的制备方法,从优化膜的分离层和支撑层结构、减小内浓差极化现象、优化膜的孔结构、提高膜的机械强度和降低后期清洗难度等方面着手,以高水通量、高盐截留率、强的力学性能和抗污染性能等为标准,分析了近年来正渗透膜的制备方法及膜结构控制方面的研究进展及发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙娜
王铎
汪锰
关键词:  正渗透  膜结构  优化  膜污染    
Abstract: As a novel membrane separation technique with high potential, forward osmosis technique has attracted extensive attention in recent years. However, the lack of high performance forward osmosis membranes has been a key factor impeding the advancement of forward osmosis technique. To date, a great many researches have been devoted to membrane structure optimization and the search for new membrane materials. Several common forward osmosis membranes, such as cellulose acetate (CA) membranes, aromatic polyamide (PA) membranes and polybenzimidazole (PBI) membranes have been widely applied in forward osmosis process. However, the disadvantages of these membrane materials are also prominent. For example, cellulose acetate membrane is easy to be hydrolyzed, poor in acid and alkali resistance; polyamide composite membrane has higher fouling tendency and poor chlorine resistance and PBI membrane has poor toughness with high price. Therefore, the deve-lopment of new types of forward osmosis membrane materials is of great significance for the improvement of membrane properties.
As we all known, FO technique is developing rapidly, so FO membrane performance needs to be improved as well. The optimization of membrane structure is crucial to improve the performance of FO membrane, and the optimization of separation layer and support layer structure is the key. In recent years, nanoparticles with the advantages of anti-fouling and hydrophilicity have been widely used in forward osmosis process. The membrane surface hydrophilicity is improved by adding nanoparticles such as zeolite, TiO2 nanoparticles and graphene oxide into the separation layer of the membrane to improve the FO membrane performance. In addition, layer-by-layer (LBL) assembly and double-layer structures are also used to optimize the separation layer of the membrane. The internal concentration polarization (ICP) occurring in support layer is the main factor affecting the FO performance. Therefore, optimizing the support layer of the membrane is important to improve the membrane performance. Researchers have optimized the membrane support layer by increasing the hydrophilicity, reducing the thickness, and improving the pore structure. The hydrophilicity of the support layer can be improved by selecting a hydrophilic support layer material and modifying the support layer surface. Furthermore, the support layer with small thickness, high porosity, small tortuosity, high mechanical strength and good anti-fouling perfor-mance is indispensable for a high-performance FO membrane.
In this paper, recent advancementon forward osmosis membrane fabrication methods are reviewed. Several common forward osmosis membranes and fresh forward osmosis membrane as well as their fabrication methods are summarized. Taking into account the aspects of optimizing the separation layer and support layer structure, reducing the internal concentration polarization, optimizing the pore structure, improving the mechanical strength of the membrane and reducing the difficulty of post-cleaning, the recent research progress and development trend of the fabrication methods and structure control of forward osmosis membranes are analyzed under the criterion of a high water flux, high salt rejection, strong mechanical properties and anti-pollution properties.
Key words:  forward osmosis    membrane structure    optimization    membrane fouling
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TQ028  
基金资助: 国家自然科学基金(21576249)
作者简介:  孙娜,女,2016年6月本科毕业与山东科技大学,获得工学学士学位。现为中国海洋大学在读研究生,在王铎副教授的指导下进行研究工作,目前主要研究领域为正渗透膜材料的制备与水处理技术。
王铎,中国海洋大学化学化工学院副教授,硕士研究生导师,研究方向为膜材料与水处理技术,近年来主要从事反渗透与正渗透膜材料的制备与表征以及海水淡化方面的研究工作。主持及参加了国家和省市科技项目多项,发表论文60余篇,申请专利10余项,授权发明专利6项。
引用本文:    
孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
SUN Na, WANG Duo, WANG Meng. Research Progress of Forward Osmosis Membrane Materials and Their Preparation Methods. Materials Reports, 2019, 33(17): 2966-2975.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070088  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2966
1 Dova M I, Petrotos K B, Lazarides H N.<i>Journal of Food Engineering</i>, 2007, 78(2), 422.<br />
2 Babu B R, Rastogi N K, Raghavarao K. <i>Journal of Membrane Science</i>, 2006, 280(1), 185.<br />
3 Garg A, Gupta M, Bhargava H N. <i>European Journal of Pharmaceutics and Biopharmaceutics</i>, 2007, 67(3), 725.<br />
4 Lavan D A, Mcguire T, Langer R. <i>Nature Biotechnology</i>, 2003, 21(10), 1184.<br />
5 Loeb S. <i>Desalination</i>, 1998, 120, 247.<br />
6 Mcginnis R L, Mccutcheon J R, Elimelech M. <i>Journal of Membrane Science</i>, 2007, 305(1-2), 13.<br />
7 Mcginnis R L,Elimelech M. <i>Desalinatio</i>n, 2007, 207(1-3), 370.<br />
8 Cath T Y, Childress A E, Elimelech M.<i>Journal of Membrane Science</i>, 2006, 281, 70.<br />
9 Li L L, Wang D.<i>Journal of functional materials</i>, 2012, 43(5), 595(in Chinese).<br />
李丽丽, 王铎. 功能材料, 2012, 43(5), 595.<br />
10 Wang M, Wang Z, Li Z X. <i>Membrane materials and their preparation, </i>Chemical Industry Press, China, 2003, pp.49(in Chinese).<br />
汪锰, 王湛, 李政雄. 膜材料及其制备, 化学工业出版社, 2003,pp.49.<br />
11 Mccutcheon J R, Mcginnis R L, Elimelech M. <i>Desalination</i>, 2005, 174, 1.<br />
12 Herron J. U.S. patent application, WO2006110497, 2006.<br />
13 Liu L L, Wang D, Wang M, et al. <i>Membrane Science and Technology</i>, 2011, 31(1), 77(in Chinese).<br />
刘蕾蕾, 王铎, 汪锰, 等. 膜科学与技术, 2011, 31(1), 77.<br />
14 Guan P P, Wang D.<i>Desalination and Water Treatment</i>, 2016, 57, 27505.<br />
15 Li G, Li X M, He T, et al. <i>Desalination and Water Treatment</i>, 2013, 51(13-15), 2656.<br />
16 Zhao S, Zou L.<i>Desalination</i>, 2011, 278(1), 157.<br />
17 Yip N Y, Tiraferri A, Phillip W A, et al.<i>Environmental Science & Technology</i>, 2011, 45(10), 4360.<br />
18 Yip N Y, Tiraferri A, Phillip W A, et al.<i>Environmental Science & Technology</i>, 2010, 44(10), 3812.<br />
19 Huang Y. Studies on preparation and performance of polyamide composite forward osmosis membrane. 's Thesis, Ocean University of China, China, 2011(in Chinese).<br />
黄燕. 聚酰胺复合正渗透膜的制备及其性能研究. 硕士学位论文, 中国海洋大学, 2011.<br />
20 Wang R, Shi L, Tang C Y, et al.<i>Journal of Membrane Science,</i> 2010, 355(1), 158.<br />
21 Wei J, Qiu C, Tang C Y, et al.<i>Journal of Membrane Science</i>, 2011, 372(1), 292.<br />
22 Shen L, Wang F Q, Tian L, et al. <i>Journal of Membrane Science</i>, 2018, 563, 284.<br />
23 Li X S, Loh C H, Wang R, et al. <i>Journal of Membrane Science</i>, 2017, 525, 257.<br />
24 Wang K Y, Chung T S, Qin J J. <i>Journal of Membrane Science</i>, 2007, 300, 6.<br />
25 Yang Q, Wang K Y, Chung T S.<i>Environmental Science and Technology</i>, 2009, 43, 2800.<br />
26 Flanagan M F, Escobar I C.<i>Journal of Membrane Science</i>, 2013, 434(5), 85.<br />
27 Han J, Cho Y H, Kong H, et al. <i>Journal of Membrane Science</i>, 2013, 428, 533.<br />
28 Shaffer D L, Werbe J R, Jaramillo H, et al. <i>Desalination</i>, 2015, 356, 271.<br />
29 You S J, Tang C Y, Yu C, et al. <i>Environmental Science and Technology</i>, 2013, 47, 8733.<br />
30 Zhong Y J, Zhang J C, Wu Z Y,et al. <i>Journal of Chemical Industry and Engineering</i>, 2015, 66(1), 386(in Chinese).<br />
钟溢键, 张济辞, 吴子焱, 等. 化工学报, 2015, 66(1), 386.<br />
31 Liu P, Zhang S H, Wang T. <i>Membrane Science and Technology</i>, 2016, 36(4), 7(in Chinese)<br />
刘鹏, 张守海, 王涛. 膜科学与技术, 2016, 36(4), 7.<br />
32 Kanagaraj P, Nagendran A, Rana D, et al.<i>Applied Surface Science</i>, 2015, 329, 165.<br />
33 Waheed S, Ahmad A, Khan S M,et al. <i>Desalination</i>, 2014, 351, 59.<br />
34 Bilongo T G, Remigy J C, Clifton M J.<i>Journal of Membrane Science</i>, 2010, 364, 304.<br />
35 Li X S, Wang R, Tang C Y, et al. <i>Colloids and Surfaces B: Biointerfa-ces</i>, 2012, 94, 333.<br />
36 Wang H, Chung T S, Tong Y W, et al. <i>Soft Matter</i>, 2011, 7, 7274.<br />
37 Zhang Y, Qiu C, Li X, et al. <i>Journal of Membrane Science</i>, 2012, 423-424, 422.<br />
38 Sun G, Chung T S, Jeyaseelan K, et al. <i>RAC Advances</i>, 2013, 3, 473.<br />
39 Wang H L, Chung T S, Tang Y W, et al. <i>Journal of Membrane Science</i>, 2013, 434, 130.<br />
40 Wang H L, Chung T S, Tang Y W. <i>Journal of Membrane Science</i>, 2013, 445, 47.<br />
41 Ma N, Wei J, Liao R H,et al. <i>Journal of Membrane Science</i>, 2012, 405-406, 149.<br />
42 Niksefat N, Jahanshahi M, Rahimpour A.<i>Desalination</i>, 2014, 343, 140.<br />
43 Rajaeian B, Rahimpour A, Tade M O, et al.<i>Desalination</i>, 2013, 313, 176.<br />
44 Amini M, Jahanshahi M, Rahimpour A.<i>Journal of Membrane Science</i>, 2013, 435, 233.<br />
45 Ghanbari M, Emadzadeh D, Lau W J, et al. <i>Desalination</i>, 2015, 358, 33.<br />
46 Nguyena T P N, Yuan E T, Kim I C, et al. <i>Journal of Membrane Science</i>, 2013, 433, 49.<br />
47 Zirehpour A, Rahimpour A, Seyedpour F, et al. <i>Desalination</i>, 2015, 371, 46.<br />
48 Jin L M, Wang Z Y, Zheng S X,et al. <i>Journal of Membrane Science</i>, 2018, 545, 11.<br />
49 Liu C, Fang W X, Chou S R, et al. <i>Desalination</i>, 2013, 308, 147.<br />
50 Qiu C Q, Qi S, Tang C Y. <i>Journal of Membrane Science</i>, 2011, 381, 74.<br />
51 Li M N, Sun X F, Wang L, et al.<i>Desalination</i>. 2018, 436, 107.<br />
52 王铎, 许春玲, 苏燕, 等. 中国专利, CN103055713A, 2013.<br />
53 Su J, Chung T S, Helmer B J, et al. <i>Journal of Membrane Science</i>, 2012, 396, 92.<br />
54 Qi S, Qiu C Q, Zhao Y, et al. <i>Journal of Membrane Science</i>, 2012, 405, 20.<br />
55 姜莹, 邹昊, 彭博, 等. 中国专利, CN103432913A, 2013.<br />
56 Fang W X, Wang R, Chou S R, et al. <i>Journal of Membrane Science</i>, 2012, 394-395, 140.<br />
57 Loeb S, Titelman L, Korngold E, et al. <i>Journal of Membrane Science</i>, 1997, 129(2), 243.<br />
58 Ma N, Wei J, Qi S, et al. <i>Journal of Membrane Science</i>, 2013, 441, 54.<br />
59 Tian E L, Zhou H, Ren Y W, et al. <i>Desalination</i>, 2014, 347, 207.<br />
60 Zhou Z Z, Lee J Y, Chung T S. <i>Chemical Engineering Journal</i>, 2014, 249, 236.<br />
61 Vilakati G D, Wong M C Y, Hoek E M V,et al. <i>Journal of Membrane Science</i>, 2014, 469, 216.<br />
62 Widjojo N, Chung T S, Weber M, et al. <i>Chemical Engineering Journal</i>, 2013, 220, 15.<br />
63 Han G, Chung T S, Toriida M, et al. <i>Journal of Membrane Science</i>, 2012, 423-424, 543.<br />
64 Wang Y Q, Xu T W.<i>Journal of Membrane Science</i>, 2015, 476, 330.<br />
65 Yasukawa M, Mishima S, Shibuya M, et al. <i>Journal of Membrane Science</i>, 2015, 487, 51.<br />
66 Ong R C, Chung T S, Wit J S, et al.<i>Journal of Membrane Science</i>, 2015, 473, 63.<br />
67 Huang L W, Bui N N, Meyering M T, et al.<i>Journal of Membrane Science</i>, 2013, 437, 141.<br />
68 Emadzadeh D,Lau W J, Matsuura T, et al. <i>Journal of Membrane Science</i>, 2014, 449, 74.<br />
69 Emadzadeh D, Lau W J, Matsuura T,et al. <i>Desalination</i>, 2014, 348, 82.<br />
70 Darabi R R, Jahanshah M, Peyravi M. <i>Chemical Engineering Research and Design</i>, 2018, 133, 11.<br />
71 Liu X, Ng H Y.<i>Journal of Membrane Science</i>, 2015, 481, 148.<br />
72 Wu X, Field R W, Wu J J, et al.<i>Journal of Membrane Science</i>. 2017, 540, 251.<br />
73 Arena J T, Manickam S S, Reimund K K, et al. <i>Desalination</i>. 2014, 343, 8.<br />
74 Yu Y, Seo S, Kim I C,et al. <i>Journal of Membrane Science</i>, 2011, 375(1-2), 63.<br />
75 Herron J R, Beaudry E G, Jochums C E, et al.U.S. patent, US5281230, 1994.<br />
76 Stillman D, Krupp L, La Y H.<i>Journal of Membrane Science</i>, 2014, 468, 308.<br />
77 Wang K Y, Yang Q, Chung T S, et al. <i>Chemical Engineering Science</i>, 2009, 64, 1577.<br />
78 Tian M, Qiu C Q, Liao Y, et al. <i>Separation and Purification Technology</i>, 2013, 118, 727.<br />
79 Puguan J M C, Kim H S, Lee K J,et al. <i>Desalination</i>, 2014, 336, 24.<br />
80 靳焘, 姜婷婷, 胡继文, 等. 中国专利, CN104492283A,2015.<br />
81 张捍民, 李海军, 杨凤林. 中国专利, CN103212309A, 2013.<br />
82 徐佳, 李明明, 冯晨晨, 等. 中国专利, CN104001434A, 2014.<br />
83 Mulder M.<i>Basic principles of membrane technology. 2nd ed, </i>Kluwer Academic Publishers, US, 1998.<br />
84 Xiao P P, Nghiem L D, Yin Y, et al. <i>Journal of Membrane Science</i>, 2015, 481, 106.<br />
85 Wang Y Q, Ou R W, Wang H T, et al. <i>Journal of Membrane Science</i>, 2015, 475, 281.<br />
86 Zhao X Z, Li J, Liu C K. <i>Desalination</i>, 2017, 408, 102.<br />
87 Hu L L, Wang D, Wang M.<i>Membrane Science and Technology</i>, 2017, 37(2), 19(in Chinese).<br />
胡乐乐, 王铎, 汪锰. 膜科学与技术, 2017, 37(2), 19.<br />
88 Liang H Q, Hung W S, Yu H H, et al. <i>Journal of Membrane Science</i>, 2017, 529, 47.<br />
89 胡继文, 姜婷婷, 靳焘, 等. 中国专利, CN104524992A. 2015.<br />
90 Sukipaneenit P, Chung T S.<i>Environment Science and Technology</i>, 2012, (46), 7358.<br />
91 Luo L, Wang P, Zhang S, et al.<i>Journal of Membrane Science</i>, 2014, 461, 28.<br />
92 Wang K Y, Chung T S, Qin J J.<i>Journal of Membrane Science</i>, 2007, 300, 6.<br />
93 Fu F J, Zhang S, Sun S P, et al. <i>Journal of Membrane Science</i>, 2013, 443, 144.<br />
94 Yu H Y, Kang Y, Liu Y L, et al. <i>Journal of Membrane Science</i> 2014, 449, 50.<br />
95 Gary G T, Mccutcheon J R, Elimelech M. <i>Desalination</i>, 2006, 197, 1.<br />
96 Song X J, Wang L, Tang C Y, et al.<i>Desalination</i>, 2015, 369, 1.<br />
97 Nguyen A, Zou L, Priest C.<i>Journal of Membrane Scienc</i>e, 2014, 454, 264.<br />
98 Zhang S, Wang K Y, Chung T S, et al.<i>Journal of Membrane Science</i>, 2010, 360, 522.<br />
99 Yasuda H, Lamaze C E. <i>Journal of Membrane Science</i>, 1971, 5, 111.<br />
10 0 Madsen H T, Bajraktari N B, Claus H N, et al.<i>Journal of Membrane Science</i>, 2015, 476, 469.<br />
1 Guo H, Yao Z K, Wang J Q, et al.<i>Journal of Membrane Science</i>, 2018, 551, 234.<br />
2 Wang J, Xiao T T, Bao R Y, et al.<i>Process Safety and Environmental Protection</i>, 2018, 116, 632.<br />
3 Xu W X, Ge Q C.<i>Journal of Membrane Science</i>, 2018, 555, 507.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 张雪飞, 白景元, 管仁国, 刘燕, 周天国. 利用几何优化的搅拌设备改善半固态搅拌法制备的B4Cp/A356复合材料的颗粒分布均匀性[J]. 材料导报, 2019, 33(2): 298-303.
[3] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[4] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[5] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[6] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[7] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[8] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[9] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[10] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[11] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[12] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[13] 李雪云, 王合中. TEMPO氧化法制备纳米几丁质晶须粒子的优化及其产品特性表征[J]. 材料导报, 2018, 32(10): 1597-1601.
[14] 潘亚鸽, 朱凌波, 唐钱, 黄清华, 李新功. 麦秸/木材均质复合无机碎料板的制备及其性能*[J]. 《材料导报》期刊社, 2017, 31(4): 25-29.
[15] 赵曼, 张慧峰, 张雨山, 黄海, 魏杨扬. 碳纳米管的性能及其在海水淡化膜分离材料中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 116-122.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed