Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 116-122    https://doi.org/10.11896/j.issn.1005-023X.2017.03.019
  碳纳米材料 |
碳纳米管的性能及其在海水淡化膜分离材料中的应用*
赵曼1,2, 张慧峰2, 张雨山2, 黄海2, 魏杨扬2
1 中国海洋大学化工学院, 青岛 266100;
2 国家海洋局天津海水淡化与综合利用研究所, 天津 300192;
Properties of Carbon Nanotubes and Their Applications in Membrane Separation Material for Seawater Desalination
ZHAO Man1, 2, ZHANG Huifeng2, ZHANG Yushan2, HUANG Hai2, WEI Yangyang2
1 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100;
2 Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration, Tianjin 300192;
下载:  全 文 ( PDF ) ( 1567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管是近年来国内外广泛关注的一类纳米材料,具有一维特征孔道结构,能够有效促进液体分子的传输速率,是理想的海水淡化膜分离材料。通过将其引入到常用的海水淡化膜基质中,借以提高膜的分离性能,逐渐成为膜分离领域的一个研究热点。综述了碳纳米管在海水淡化膜分离材料中的应用与研究进展,介绍了碳纳米管的结构并阐述了其应用于海水淡化膜分离的优异性能,总结了碳纳米管在反渗透、正渗透、膜蒸馏中的应用研究现状并分析了碳纳米管在反渗透、正渗透、膜蒸馏应用中的挑战,探讨了碳纳米管在海水淡化膜分离材料中的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵曼
张慧峰
张雨山
黄海
魏杨扬
关键词:  碳纳米管  膜分离材料  反渗透  正渗透  膜蒸馏    
Abstract: Carbon nanotubes (CNTs) possess intrinsically 1-dimenstional pore structure and can improve the transfer rate of liquid, which render them ideal separation membrane materials for desalination. To enhance membrane desalination performance via incorporating CNTs into polymeric membrane′s matrix has become a subject in membrane academia. This article reviews recent scientific and technological advances in the development of membrane separation based on carbon nanotubes. The structure and properties of carbon nanotubes are introduced, while the unique properties of carbon nanotubes with respect to membranes separation are described. In particular, this review focuses on the current applications of carbon nanotubes in the field of reverse osmosis, forward osmosis and membranes distillation. Finally, the challenges and opportunities of carbon nanotubes in membrane filed are analyzed and the application potential of carbon nanotubes in membrane separation is presented.
Key words:  carbon nanotube    membrane separation material    reverse osmosis    forward osmosis    membrane distillation
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB33  
基金资助: *国家自然科学基金(21276055);海洋行业公益性行业专项经费(201505006-3);中国博士后科学基金面上项目(2016M590190);中央级公益性科研院所基本科研业务费专项资金(K-JBYWF-2016-T11)
作者简介:  赵曼:女,1987年生,博士,工程师,主要从事复合膜分离材料方面的研究 E-mail:zhaomancrystal@163.com 张雨山:通讯作者,男,1962年生,博士,研究员,主要从事海水淡化膜分离材料方面的研究 E-mail:yushanzhang@hotmail.com
引用本文:    
赵曼, 张慧峰, 张雨山, 黄海, 魏杨扬. 碳纳米管的性能及其在海水淡化膜分离材料中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 116-122.
ZHAO Man, ZHANG Huifeng, ZHANG Yushan, HUANG Hai, WEI Yangyang. Properties of Carbon Nanotubes and Their Applications in Membrane Separation Material for Seawater Desalination. Materials Reports, 2017, 31(3): 116-122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.019  或          http://www.mater-rep.com/CN/Y2017/V31/I3/116
1 Shannon M A, Bohn P W, Elimelech M, et al. Science and techno-logy for water purification in the coming decades[J]. Nature,2008,452(7185):301.
2 Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science,2011,333(6043):712.
3 Humplik T, Lee J, O′Hern S C, et al. Nanostructured materials for water desalination[J]. Nanotechnology,2011,22(29):292001.
4 Gong X N, Zhu L P, Xu Y Y, et al. Applications of carbon nanotubes (CNTs) in separation membrane materials[J]. Membr Sci Technol,2011,31(5):89(in Chinese).
宫晓娜,朱利平,徐又一,等. 碳纳米管在分离膜材料中的应用[J]. 膜科学与技术,2011,31(5):89.
5 Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature,2001,414(6860):188.
6 Kroto H W, Heath J R, O′Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162.
7 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
8 Hamada N, Sawada S I, Oshiyama A. New one-dimensional conductors: Graphitic microtubules[J]. Phys Rev Lett,1992,68(10):1579.
9 Luo J, Li C W, Lan Z Y, et al. The application of nano carbon based materials in electrical conductive adhesives [J]. Progr Chem,2015,27(9):1158(in Chinese).
罗杰,李朝威,兰竹瑶,等. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展,2015,27(9):1158.
10 Beg S, Rizwan M, Sheikh A M, et al. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity[J]. J Pharm Pharm,2011,63(2):141.
11 Zhang J L, Cui S. Carbon nanotubes polymer composites[J]. Prog Chem,2006,18(10):1313(in Chinese).
张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展,2006,18(10):1313.
12 Ansari R, Kazemi E. Detailed investigation on single water molecule entering carbon nanotubes[J]. Appl Math Mech,2012,33(10):1287.
13 Nicholls W D, Borg M K, Lockerby D A, et al. Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics[J]. Microfluidics Nanofluidics,2012,12(1-4):257.
14 Liu Y, Wang Q. Transport behavior of water confined in carbon nanotubes[J]. Phys Rev B,2005,72(8):085420.
15 Thomas J A, McGaughey A J H. Water flow in carbon nanotubes: Transition to subcontinuum transport[J]. Phys Rev Lett,2009,102(18):184502.
16 Berezhkovskii A, Hummer G. Single-file transport of water molecules through a carbon nanotube[J]. Phys Rev Lett,2002,89(6):064503.
17 Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes[J]. PNAS,2003,100(18):10175.
18 Chan Y, Hill J M. Modeling on ion rejection using membranes comprising ultra-small radii carbon nanotubes[J]. Eur Phys J B,2012,85(2):1.
19 Chan Y, Hill J M. Ion selectivity using membranes comprising functionalized carbon nanotubes[J].J Mathe Chem,2013,51(5):1258.
20 Corry B. Water, ion transport through functionalised carbon nanotubes: Implications for desalination technology[J]. Energy Environ Sci,2011,4(3):751.
21 Corry B. Designing carbon nanotube membranes for efficient water desalination[J]. J Phys Chem B,2008,112(5):1427.
22 Tiraferri A, Vecitis C D, Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties[J]. ACS Appl Mater Interfaces,2011,3(8):2869.
23 Khalid A, Al-Juhani A A, Al-Hamouz O C, et al. Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination[J]. Desalination,2015,367:134.
24 Park J, Choi W, Kim S H, et al. Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes[J]. Desalination Water Treat,2010,15(1-3):198.
25 Kim H J, Baek Y, Choi K, et al. The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs[J]. RSC Adv,2014,4(62):32802.
26 Ahn C H, Baek Y, Lee C, et al. Carbon nanotube-based membranes: Fabrication and application to desalination[J]. J Ind Eng Chem,2012,18(5):1551.
27 Baek Y, Kim C, Seo D K, et al. High performance and antifouling vertically aligned carbon nanotube membrane for water purification[J]. J Membr Sci,2014,460:171.
28 Kim E S, Hwang G, Gamal El-Din M, et al. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocompo-site membrane for enhanced water treatment[J]. J Membr Sci,2012,394-395:37.
29 Shawky H A, Chae S R, Lin S, et al. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment[J]. Desalination,2011,272(1-3):46.
30 Hinds B J, Chopra N, Rantell T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science,2004,303(5654):62.
31 Park S M, Jung J, Lee S, et al. Fouling and rejection behavior of carbon nanotube membranes[J]. Desalination,2014,343:180.
32 Giwa A, Akther N,Dufour V,et al.A critical review on recent poly-meric and nano-enhanced membranes for reverse osmosis[J]. RSC Adv,2016,6(10):8134.
33 Son M, Choi H G, Liu L, et al. Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination[J]. Chem Eng J,2015,266:376.
34 Barona G N B, Lim J, Choi M, et al. Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis[J]. Desalination,2013,325:138.
35 Chan W F, Chen H Y, Surapathi A, et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination[J].ACS Nano,2013,7(6):5308.
36 Zhang L, Shi G, Qiu S, et al. Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes[J]. Desalination Water Treat,2011,34(1-3):19.
37 Zhao H, Qiu S, Wu L, et al. Improving the performance of polya-mide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. J Membr Sci,2014,450:249.
38 Zhao H, Wu L, Zhou Z, et al. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide[J]. Phys Chem Chem Phys,2013,15(23):9084.
39 Lu P, Liang S, Qiu L, et al. Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates[J]. J Membr Sci,2016,504:196.
40 Wang R, Shi L, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. J Membr Sci,2010,355(1-2):158.
41 Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. J Membr Sci,2011,379(1-2):459.
42 Jia Y, Li H, Wang M, et al. Carbon nanotube: Possible candidate for forward osmosis[J]. Sep Purif Technol,2010,75(1):55.
43 Goh K, Setiawan L, Wei L, et al. Fabrication of novel functiona-lized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process[J]. J Membr Sci,2013,446:244.
44 Amini M, Jahanshahi M, Rahimpour A. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functiona-lized multi-walled carbon nanotubes[J]. J Membr Sci,2013,435:233.
45 Gerstandt K, Peinemann K V, Skilhagen S E, et al. Membrane processes in energy supply for an osmotic power plant[J]. Desalination,2008,224(1-3):64.
46 Wang Y, Ou R, Ge Q, et al. Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane[J]. Desalination,2013,330:70.
47 Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. J Membr Sci,2011,367(1-2):340.
48 Dumée L, Lee J, Sears K, et al. Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems[J]. J Membr Sci,2013,427:422.
49 Dabaghian Z, Rahimpour A, Jahanshahi M. Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination[J]. Desalination,2016,381:117.
50 Tijing L D, Woo Y C, Shim W G, et al. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation[J]. J Membr Sci,2016,502:158.
51 Susanto H. Towards practical implementations of membrane distillation[J]. Chem Eng Process: Process Intensif,2011,50(2):139.
52 Dumée L F, Sears K, Schütz J, et al. Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation[J]. J Membr Sci,2010,351(1-2):36.
53 Zhang B, Liu L, Xie S, et al. Built-up superhydrophobic composite membrane with carbon nanotubes for water desalination[J]. RSC Adv,2014,4(32):16561.
54 Qiu W L, Jia W C, Xu D, et al. Progress in fabrication of superhydrophobic materials and their application in oil-water separation[J]. J Mater Sci Eng,2016,34(3):508(in Chinese).
邱文莲,贾伟灿,徐都,等. 超疏水材料制备及其在油水分离中的应用研究进展[J]. 材料科学与工程学报,2016,34(3):508.
55 Dumée L F, Gray S, Duke M, et al. The role of membrane surface energy on direct contact membrane distillation performance[J]. Desalination,2013,323:22.
56 Dumée L, Germain V, Sears K, et al. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation[J]. J Membr Sci,2011,376(1-2):241.
57 Dumée L, Campbell J L, Sears K, et al. The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation[J]. Desalination,2011,283:64.
58 Choi J H, Jegal J, Kim W N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes[J]. J Membr Sci,2006,284(1-2):406.
59 Bonyadi S, Chung T S. Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach[J]. J Membr Sci,2009,331(1-2):66.
60 Tofighy M A, Mohammadi T. Salty water desalination using carbon nanotube sheets[J]. Desalination,2010,258(1-3):182.
61 Gethard K, Sae-Khow O, Mitra S. Carbon nanotube enhanced membrane distillation for simultaneous generation of pure water and concentrating pharmaceutical waste[J]. Sep Purif Technol,2012,90:239.
62 Bhadra M, Roy S, Mitra S. Flux enhancement in direct contact membrane distillation by implementing carbon nanotube immobilized PTFE membrane[J]. Sep Purif Technol,2016,161:136.
63 Roy S, Bhadra M, Mitra S. Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation[J]. Sep Purif Technol,2014,136:58.
64 Bhadra M, Roy S, Mitra S. Enhanced desalination using carboxylated carbon nanotube immobilized membranes[J]. Sep Purif Technol,2013,120:373.
65 Kar S, Bindal R C, Tewari P K. Carbon nanotube membranes for desalination and water purification: Challenges and opportunities[J]. Nano Today,2012,7(5):385.
66 Sahoo N G, Rana S, Cho J W, et al. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Prog Polym Sci,2010,35(7):837.
67 Das R, Ali M E, Hamid S B A, et al. Carbon nanotube membranes for water purification: A bright future in water desalination[J]. Desalination,2014,336:97.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[3] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[4] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[5] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[6] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[7] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[8] 潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
[9] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[10] 张靠民, 谢涛, 赵焱, 董祥, 李如燕. 快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能[J]. 材料导报, 2018, 32(24): 4370-4373.
[11] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[12] 王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17): 2932-2939.
[13] 贺雍律, 张鉴炜, 黄春芳, 刘钧, 江大志, 鞠苏. CFRP层合板抗分层损伤技术研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2288-2294.
[14] 朱平,邓广辉,邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 149-158.
[15] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed