Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1842-1851    https://doi.org/10.11896/j.issn.1005-023X.2018.11.011
  材料综述 |
高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法
赵龙,宋平新,张迎九,杨涛
郑州大学材料物理教育部重点实验室,郑州 450001
Diamond-Copper Composites with High Thermal Conductivity Used for Electronic Packaging: Fabrication Techniques, Performance Influencing Factors and Interfacial Strengthening Methods
ZHAO Long, SONG Pingxin, ZHANG Yingjiu, YANG Tao
Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 1703KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子行业的不断发展,第二代热沉材料如钨/铜封装材料、钼/铜封装材料、碳化硅/铝封装材料等已不能满足该领域日益增长的需求。金刚石的热导率为2 300 W/(m·K),是已知热导率最高的物质;铜的热导率为401 W/(m·K),在众多金属中仅次于Ag。金刚石/铜复合材料具有诸多优点:(1)热导率高、强度大;(2)热膨胀系数能够通过改变金刚石与铜的体积分数加以调控,以实现与硅、锗等半导体材料的匹配;(3)具有比金刚石/银复合材料更低的成本以及比金刚石/铝、钨/铜、钼/铜等材料更高的热导率。因此,金刚石/铜复合材料是一种理想的电子封装候选材料。
    金刚石/铜复合材料的制备技术多种多样,其中粉末冶金、放电等离子体烧结、液相渗透是最适合该复合材料特性也是研究最广泛的技术。液相渗透法又分为无压熔渗法和压力辅助熔渗法,与粉末冶金法和放电等离子体烧结法相比,该法成本低、操作性强,成为近年研究的重点方向。目前,国际上已制备出热导率高达900 W/(m·K)的金刚石/铜复合材料。
    另一方面,金刚石与铜界面润湿度较差,导致复合材料致密度不高且热导率不易提升。解决金刚石与铜界面润湿度较差的问题成为制备金刚石/铜复合材料的关键,也促使国内外研究者不断尝试在制备工艺环节引入改进措施。目前已探索出两种较为可行的方法:(1)在复合材料制备过程中添加少量B、Cr等活性元素,使这些活性元素与铜形成合金;(2)在制备金刚石/铜复合材料之前,采用化学镀、扩散烧结、盐浴、磁控溅射等手段预先在金刚石表面包覆一层均匀的碳化物。
    本文总结了金刚石/铜复合材料的国内外最新研究进展及主流制备技术,论述了影响复合材料的热膨胀系数及热导率的主要因素。文章还介绍了改善金刚石与铜的界面润湿度的方法,最后对金刚石/铜复合材料的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵龙
宋平新
张迎九
杨涛
关键词:  金刚石/铜复合材料  热导率  热膨胀系数  电子封装    
Abstract: The continuous evolution of the electronics industry causes gradual obsolescence of the second generation of heat sink materials, such as tungsten/copper packaging materials, molybdenum/copper packaging materials and silicon carbide/aluminum packaging materials. Diamond holds the highest known thermal conductivity of 2 300 W/(m·K), and copper owns the second hig-hest thermal conductivity (401 W/(m·K)) after silver amongst the rich variety of metals. The composite materials of diamond and copper enjoy many special advantages: (Ⅰ) high thermal conductivity and high strength; (Ⅱ) the thermal expansion coefficient adjustable by varying diamond and copper contents, enabling thermal expansion matching with semiconductor materials such as silicon and germanium; (Ⅲ) more cost-effective than diamond/silver composites, and more thermally conductive than diamond/aluminum, tungsten/copper and molybdenum/copper, etc. Thus diamond/copper composites have been regarded as an ideal candidate material for electronic packaging.
    A diverse range of techniques can be used to fabricate diamond/copper composites, but the powder metallurgy, spark plasma sintering and liquid infiltration are the most applicable and extensively researched methods. Liquid infiltration techniques can be classified into pressureless infiltration and pressure-assisted infiltration, which have displayed the features of low cost and high operability and become the hot topic in recent years. And researchers have so far successfully obtained the diamond/copper composite with a thermal conductivity of up to 900 W/(m·K).
    On the other hand, plenty of works have proved that poor interfacial wettability between diamond and copper leads to unsatisfactory density, and in consequence, limited promotion potential of thermal conductivity. This makes the issue of wettability a crucial point for fabricating diamond/copper composites, and urges intensive research efforts to seek countermeasures. At present, there are mainly two reasonable approaches: (Ⅰ) the formation of alloys consisting of copper and active elements, e.g. B, Cr, etc. which can be added to the synthesis system during the fabrication process; (Ⅱ) the encapsulation of diamond with a uniform layer of carbide before the fabrication of composite, by means of electroless plating, diffusion sintering, salt bath treatment or magnetron sputtering.
    In this paper, we provides a summary of the research progress and major production techniques of diamond/copper composites, a survey on the main influencing factors upon the composite’s thermal expansion coefficient and thermal conductivity, an introduction of the feasible methods to improve interfacial wettability, as well as an outlook on this prospective electronic packaging material.
Key words:  diamond/copper composite    thermal conductivity    thermal expansion coefficient    electronic packaging
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB331  
基金资助: 国家自然科学基金(11104331)
作者简介:  赵龙:男,1993年生,硕士研究生,主要从事超硬材料的研究 E-mail:378708486@qq.com 宋平新:通信作者,女,讲师,主要从事纳米与功能材料的研究 E-mail:songpingxin@zzu.edu.cn
引用本文:    
赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
ZHAO Long, SONG Pingxin, ZHANG Yingjiu, YANG Tao. Diamond-Copper Composites with High Thermal Conductivity Used for Electronic Packaging: Fabrication Techniques, Performance Influencing Factors and Interfacial Strengthening Methods. Materials Reports, 2018, 32(11): 1842-1851.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.011  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1842
1 Zhang S P, Zheng H Y. New progress of electronic packaging technology[J].Electronic and Packaging,2004,4(1):3(in Chinese).
张蜀平,郑宏宇.电子封装技术的新进展[J].电子与封装,2004,4(1): 3.
2 Zweben C. Advances in composite materials for thermal management in electronic packaging[J].Journal of Metals,1998,50(6):47.
3 Nie C Z, Zhao N Q. Review of metal-matrix composite materials for electronic packaging[J].Heat Treatment of Metals,2003,28(6):1(in Chinese).
聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003,28(6):1.
4 Zweben C. Advanced materials for optoelectronic packaging[J].Electronic Packaging and Production,2002,42(9):37.
5 Zhang Y J, Wang Z F, Lv W J, et al. Metal-matrix low thermal expansion high conductivity composites[J].Materials Review,1997,11(3):52(in Chinese).
张迎九,王志法,吕维洁,等.金属基低膨胀高导热复合材料[J].材料导报,1997,11(3): 52.
6 Zhao Na. A study on preparation and properties of diamond/copper composites[D].Kunming: Kunming University of Science and Technology,2011(in Chinese).
赵娜.封装用金刚石/铜复合材料的制备及性能研究[D].昆明:昆明理工大学,2011.
7 Li X, Long J P, Xu M, et al. Progress in diamond/metal matrix composites[J].Special Casting and Nonferrous Alloys,2012,32(7):654(in Chinese).
李信,龙剑平,胥明,等.金刚石颗粒/金属基复合材料的研究进展[J].特种铸造及有色合金,2012,32(7):654.
8 Sergey V, Fedor M. Thermal conductivity of diamond composites[J].Materials,2009,2(4):2467.
9 Yoshida K, Morigami H. Thermal properties of diamond/copper composite[J].Material Microelectronics Reliability,2004,7(44):303.
10 Schubert T, Brendel A, Weiβgarber T, et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J].Materials Science and Engineering A,2008,475(9):39.
11 Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond composites sintered under high pressures[J].Diamond and Related Materials,2008,17(4-5):838.
12 He J S, Wang X T, Zhang Y, et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method[J].Composites Part B Engineering,2015,68(68):22.
13 Zhang C, Wang R C, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299.
14 Zuo Q, Wang W, Gu M S, et al. Thermal conductivity of the diamond-Cu composites with chromium addition[J].Advanced Materials Research,2011,311:287.
15 Wang F Y, Wang W C, Shi M, et al. Fabrication of diamond/copper composites by hot isostatic pressing[J].Rare Metal Materials and Engineering,2017,46(3):853(in Chinese).
王方宇,王文超,石明,等.热等静压制备铜金刚石复合材料[J].稀有金属材料与工程,2017,46(3):853.
16 Cui W. Formation and properties of diamond/copper composites by molten metal infiltration[D].Beijing: University of Science and Technology Beijing,2016(in Chinese).
崔巍.熔渗法制备金刚石/铜复合材料及其性能[D].北京:北京科技大学,2016.
17 Zhang Y J, Tong Z S, Shen Z S. Preparation of Cu/diamond composites by spark plasma sintering[J].Journal of University of Science and Technology Beijing,2009,31(8):1019(in Chinese).
张毓隽,童震松,沈卓身.SPS方法制备铜/金刚石复合材料[J].北京科技大学学报,2009,31(8):1019.
18 Rosinski M, Ciupinski L, Grzonka J, et al. Synthesis and characte-rization of the diamond/copper composites produced by the pulse plasma sintering (PPS) method[J].Diamond and Related Materials,2012,27-28:29.
19 Tao J M, Zhu X K, Tian W W, et al. Properties and microstructure of Cu/diamond composites prepared by spark plasma sintering method[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3210(in Chinese).
陶静梅,朱心昆,田维维,等.放电等离子烧结法制备Cu/金刚石复合材料的性能与显微组织[J].中国有色金属学报,2014,24(10):3210.
20 Abyzov A M, Kruszewski M J, Mazurkiewicz M, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J].Materials and Design,2015,76:97.
21 Ciupiński L, Kruszewski M J, Grzonka J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate[J].Materials and Design,2017,120:170.
22 Dong Y H, He X B, L Xu. Fabrication and thermal conductivity of near-net-shaped diamond/copper composites by pressureless infiltration[J].Journal of Materials Science,2011,46(11):3862.
23 Abyboz A M, Sergey V, Shakhov F M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix[J].Journal of Materials Science,2011,46(5):1424.
24 Chen H, Li S. Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques[J].Journal of Materials Science,2012,47(7):3367.
25 Kang Q P, He X B, Ren S B, et al. Preparation of high thermal conductivity copper/diamond composites using molybdenum carbide-coated diamond particles[J].Journal of Materials Science,2013,48(18):6133.
26 Dong L, Dong G X, Liu Q X, et al. Preparation of diamond/copper composite sintered by ultrahigh pressure infiltration technology[J].Transactions of Materials and Heat Treatment,2015,36(2):13(in Chinese).
董丽,董桂霞,刘秋香,等.超高压熔渗烧结法制备金刚石/铜复合材料[J].材料热处理学报,2015,36(2):13.
27 Li Jianwei. Thermal conductivity of Cu/diamond composites prepared by gas pressure infiltration[D].Beijing: University of Science and Technology Beijing,2017(in Chinese).
李建伟.气压浸渗制备铜/金刚石复合材料的导热性能[D].北京:北京科技大学,2017.
28 Shang Q L, Tao J M, Xu M C, et al. Research progress of diamond-Cu composite material for electronic packaging[J].Electronics Process Technology,2009,30(1):5(in Chinese).
尚青亮,陶静梅,徐孟春,等.电子封装材料用金刚石/铜复合材料的研究进展[J].电子工艺技术,2009,30(1):5.
29 Li G, Ren S B, Qu X H. Effects of reinforced phase diamond on CTE of diamond/Cu composites[J].Powder Metallurgy Technology,2013,31(5):328(in Chinese).
李改,任淑彬,曲选辉.增强相金刚石对金刚石/Cu热膨胀系数的影响[J].粉末冶金技术,2013,31(5):328.
30 Dong Y H, Zeng D C, Zhang R Q, et al. Thermal expansion coefficient of Cr(Ti)-diamond/copper composites prepared by pressureless infiltration[J].Chinese Physics Letters,2015,32(7):17.
31 Deng A Q, Fan J B, Tan Z Q, et al. Research progress of diamond-Cu composite material for electronic packaging[J].Diamond and Abrasives Engineering,2010,30(5):56(in Chinese).
邓安强,樊静波,谭占秋,等.金刚石/铜复合材料在电子封装材料领域的研究进展[J].金刚石与磨料磨具工程,2010,30(5):56.
32 Xia Y, Xie Y F, Song Y Q, et al. Investigation on diamond-Cu composites prepared by HTHP sintering process[J].Diamond and Abrasives Engineering,2010,30(6):44(in Chinese).
夏扬,谢元锋,宋月清,等.高温高压烧结金刚石-铜复合材料的研究[J].金刚石与磨料磨具工程,2010,30(6):44.
33 Cheng Shaohui. The study of metallizing cladding onto diamond[D].Zhengzhou: Zhengzhou University,2014(in Chinese)
程少辉.金刚石表面金属化处理[D].郑州:郑州大学,2014.
34 Zhang X M, Guo H, Yin F Z, et al. Improving method of interface bonding state in diamond/Cu composite material[J].Chinese Journal of Rare Metals,2013,37(2):335(in Chinese).
张习敏,郭宏,尹法章,等.金刚石/铜复合材料界面结合状态的改善方法[J].稀有金属,2013,37(2):335.
35 Deng J L, Zhang H D, Fan T X, et al. Recent progress on interface and thermal conduction models of diamond/copper composites used as electronic packaging materials[J].Materials Review A:Review Papers,2016,30(2):19(in Chinese).
邓佳丽,张洪迪,范同祥,等.电子封装用金刚石/铜复合材料界面与导热模型的研究进展[J].材料导报:综述篇,2016,30(2):19.
36 Wang X F, Luo T G. Research on surface metallization of diamond[J].Mining Research and Development,2014,34(2):59(in Chinese).
王喜锋,罗铁钢.金刚石表面金属化的研究[J].矿业研究与开发,2014,34(2):59.
37 Huang S L, Zhang Y J, Yang D L. Study of electroless plating nickel on the diamond[J].Surface Technology,2015(6):65(in Chinese).
黄世玲,张迎九,杨德林.金刚石化学镀镍的研究[J].表面技术,2015(6):65.
38 Xiang Dong. The application study of chemical plating technology on diamond surface[D].Jinan: Shandong University,2006(in Chinese).
项东.金刚石表面化学镀覆技术的应用研究[D].济南:山东大学,2006.
39 Chuprina V G. Physicochemical interaction and structure development during the formation of metal gas-transfer coatings on diamond (review). 1. Kinetics[J].Soviet Powder Metallurgy and Metal Ceramics,1992,31(7):578.
40 Chuprina V G. Physicochemical interaction and structure development during the formation of metal gas-transport coatings on diamond (review) Ⅱ. Mechanism[J].Soviet Powder Metallurgy and Metal Ceramics,1992,31(8):687.
41 Li B H, Zhang Y J. Study on diffusion plated tungsten on diamond surface[J].Diamond and Abrasives Engineering,2015,205(35):17(in Chinese).
李宾华,张迎九.金刚石表面扩散镀钨的研究[J].金刚石与磨料磨具工程,2015,205(35):17.
42 Zhang C, Wang R C, Peng C Q, et al. Effects of tungsten coating layer on thermal conductivity of diamond-copper composites[J].Rare Metal Materials and Engineering,2016,45(35):2692(in Chinese).
张纯,王日初,彭超群,等.表面镀钨层对金刚石/铜复合材料热导率的影响[J].稀有金属材料与工程,2016,45(35):2692.
43 Zhang Y, Zhang H L, Wu J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J].Scripta Materialia,2011,65(12):1097.
44 Kang Q P, He X B, Ren S B, et al. Effect of molybdenum carbide intermediate layers on thermal properties of coppe-diamond compo-sites[J].Journal of Alloys and Compounds,2013,576(44):380.
45 Okada T, Fukuoka K, Arata Y, et al. Tungsten carbide coating on diamond particles in molten mixture of Na2CO3 and NaCl[J].Diamond and Related Materials,2015,52:11.
46 Ren X T, Dong Y H, Zhang R Q, et al. Effect of salt bath plating temperature on microstructure and properties of diamond-Cr/Cu composites[J].Transactions of Materials and Heat Treatment,2017,38(1):1(in Chinese).
任学堂,董应虎,张瑞卿,等.盐浴镀覆温度对diamond-Cr/Cu复合材料组织性能的影响[J].材料热处理学报,2017,38(1):1.
47 Xia Y, Song Y Q, Lin C G, et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J].Transactions of Nonferrous Metals Society of China,2009,19(5):1161.
48 Xu Xinglong. Diamond surface modification and preparation process and performance of its composites[D].Changsha: Hunan University,2012(in Chinese).
徐兴龙.金刚石表面改性及其复合材料制备工艺与性能[D].长沙:湖南大学,2012.
49 Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J].Scripta Materialia,2007,57(11):988.
50 Zhang X M, Guo H, Yin Z F, et al. Influences of Cr element on interface structures and thermal properties of diamond/Cu composites[J].Chinese Journal of Rare Metals,2010,34(2):221(in Chinese).
张习敏,郭宏,尹法章,等.Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响[J].稀有金属,2010,34(2):221.
51 Edtmaier C, Weber L, Tavangar R. Surface modification of diamonds in diamond/Al-matrix composite[J].Advanced Materials Research,2009,59:125.
[1] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[2] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[3] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[4] 梁玉莹,吴会军,杨建明,唐兰. 气凝胶复合材料真空绝热板的热导率计算及优化[J]. 《材料导报》期刊社, 2018, 32(12): 2112-2117.
[5] 田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
[6] 杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
[7] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[8] 杜文博, 姚正军, 陶学伟, 罗西希. 钛合金表面梯度Al2O3陶瓷涂层的高温抗氧化性能*[J]. 《材料导报》期刊社, 2017, 31(14): 57-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed