Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 18-23    https://doi.org/10.11896/j.issn.1005-023X.2017.015.003
  材料综述 |
高介电常数、低介电损耗聚合物复合电介质材料研究进展*
李玉超1, 付雪连1, 战艳虎1, 谢倩1, 葛祥才1, 陶绪泉1, 廖成竹2, 卢周广2
1 聊城大学材料科学与工程学院,聊城252059;
2 南方科技大学材料系,深圳518055;
Advances in Polymer Dielectrics with High Dielectric Constant and Low Dielectric Loss
LI Yuchao1, FU Xuelian1, ZHAN Yanhu1, XIE Qian1, GE Xiangcai1, TAO Xuquan1, LIAO Chengzhu2, LU Zhouguang2
1 School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059;
2 Department of Materials Science, South University of Science and Technology of China, Shenzhen 518055;
下载:  全 文 ( PDF ) ( 1369KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高介电常数聚合物电介质材料作为当今信息功能材料的研究热点,具有实际的应用价值和前景。综述了聚合物基复合电介质材料的分类及优缺点,以及从材料微观结构设计和填料界面修饰出发(如三元杂化或设计核壳和三明治结构),来获得高介电常数、低介电损耗聚合物复合电介质材料的研究状况和应用前景,以期对高介电、低损耗聚合物基电介质材料有一个更直观全面的了解,进一步拓展该类材料在电气和生物工程领域的研究和应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李玉超
付雪连
战艳虎
谢倩
葛祥才
陶绪泉
廖成竹
卢周广
关键词:  高介电常数  低介电损耗  聚合物电介质  核壳结构    
Abstract: High permittivity (high-k) polymeric dielectrics become a hot topic in the research of information function mate-rials, which possesses practical application value and prospects. The classification and relative merits of such kink of polymer dielectric composites are summarized. Particular attention is paid on the progress and prospect of obtaining high-k, low dielectric loss polymer composite based on microstructure design and surface modification of nanofillers, such as forming ternary hybrid, core-shell and sandwich structure. The overview is expected to give a direct, comprehensive understanding of the high-k, low loss polymer dielectrics and expands its extensive researches and applications in the field of electrical and biomedical engineering.
Key words:  high dielectric constant    low dielectric loss    polymer dielectrics    core-shell structure
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB33  
基金资助: *国家自然科学基金(51407087);聊城大学科研基金(318011603);聊城大学博士启动基金(318051503);深圳市自然科学基金(JCYJ20150630145302228)
作者简介:  李玉超:男,1983年生,博士,副教授,硕士研究生导师,从事聚合物电介质、功能高分子材料研究 E-mail:liyuchao@lcu.edu.cn
引用本文:    
李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
LI Yuchao, FU Xuelian, ZHAN Yanhu, XIE Qian, GE Xiangcai, TAO Xuquan, LIAO Chengzhu, LU Zhouguang. Advances in Polymer Dielectrics with High Dielectric Constant and Low Dielectric Loss. Materials Reports, 2017, 31(15): 18-23.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.003  或          https://www.mater-rep.com/CN/Y2017/V31/I15/18
1 Huang C, Zhang Q M, deBotton G, et al. All-organic dielectric-percolative three-component composite materials with high electromechanical response[J]. Appl Phys Lett,2004,84(22):4391.
2 Dang Z M, Wang H Y, Peng B, et al. Polymer-based nanocompo-site dielectric materials with high dielectric constant[J]. Proceed CSEE,2006,26(15):100(in Chinese).
党智敏, 王海燕, 彭勃, 等. 高介电常数的聚合物基纳米复合电介质材料[J]. 中国电机工程学报, 2006, 26(15):100.
3 Dang Z M, Yuan J K, Zha J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Prog Mater Sci,2012,57(4):660.
4 Zhao B, Tang X Z, Tang X, et al. Research progress in polymers with high dielectric constant for new capacitor[J]. Mater Rev, 2009,23(S1):332(in Chinese).
赵波, 唐先忠, 唐翔, 等. 新型电容器用高介电常数聚合物研究进展[J]. 材料导报,2009,23(专辑ⅩⅢ):332.
5 Wang F J, Li W, Xue M S, et al. BaTiO3-polyethersulfone nanocomposites with high dielectric constant and excellent thermal sta-bility[J]. Composites Part B,2011,42(1):87.
6 Zhang Q, Gao F, Zhang C, et al. Enhanced dielectric tunability of Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites via interface modification by silane coupling agent[J]. Compos Sci Technol,2016, 129:93.
7 Sun W, Lu B. Characterization of proton-irradiated 65PMN-35PT/P(VDF-TrFE) 0-3 composites[J]. Mater Sci Eng B,2006,127(2-3):144.
8 Tang H, Lin Y, Andrews C, et al. Nanocomposites with increased energy density through high aspect ratio PZT nanowires[J]. Nanotechnology,2011,22(1):15702.
9 Wang F J, Zhou D X, Gong S P, et al. Study on the dielectric pro-perties of CaCu3Ti4O12/PVDF composites[J]. Mater Rev,2009,23(5):11(in Chinese).
王法军, 周东祥, 龚树萍, 等.CaCu3Ti4O12/聚偏氟乙烯复合材料的介电性能研究[J]. 材料导报,2009,23(5):11.
10 Zhou W, Wang Z, Dong L, et al. Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles[J]. Composites Part A,2015,79:183.
11 Costa P, Silva J, Lanceros Mendez S. Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) compo-sites induced by carbon nanotube type and pre-treatment[J]. Composites Part B,2016,93:310.
12 Koduru H K, Marino L, Janardhanam V, et al. Influence of thin layer of silver nanoparticles on optical and dielectric properties of poly(vinyl alcohol) composite films[J]. Surf Interfaces,2016,5:47.
13 Xu X, Yang C, Yang J, et al. Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide[J]. Composites Part B,2017,109:91.
14 Xu H, Bai Y, Bharti V, et al. High dielectric constant composites based on metallophthalocyanine oligomer and poly(vinylidene fluo-ride-trifluoroethylene) copolymer[J]. J Appl Polym Sci,2001,82(1):70.
15 Lu J, Moon K S, Kim B K, et al. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capa-citor applications[J]. Polymer,2007,48(6):1510.
16 Ho C H, Liu C D, Hsieh C H, et al. High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization[J]. Synth Met,2008,158(15):630.
17 Xie S H, Zhu B K, Wei X Z, et al. Polyimide/BaTiO3 composites with controllable dielectric properties[J]. Composites Part A,2005,36(8):1152.
18 Zhang C L, Wang Y, Deng Y, et al. Preparation and dielectric pro-perties of Al-flake/PVDF composites[J]. Acta Mater Compos Sin,2012,29(1):69(in Chinese).
张传玲, 王瑶, 邓元, 等. Al片/PVDF介电复合材料的制备及性能[J]. 复合材料学报,2012,29(1):69.
19 Li Y C, Li R, Tjong S C. Electrical transport properties of graphite sheets doped polyvinylidene fluoride nanocomposites[J]. J Mater Res,2010,25(8):1645.
20 Yang J, Yang X, Pu Z, et al. Controllable high dielectric permittivity of poly(arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction[J]. Mater Lett, 2013,93:199.
21 Kim B G, Kim Y S, Kim Y H, et al. Nano-scale insulation effect of polypyrrole/polyimide core-shell nanoparticles for dielectric compo-sites[J]. Compos Sci Technol,2016,129:153.
22 Liu R, Wang J, Li Q, et al. Copper phthalocyanine oligomer grafted acrylic elastomer nanocomposites with high dielectric constants[J]. J Appl Polym Sci,2014,131(6):39975.
23 Yao S H, Dang Z M, Jiang M J, et al. BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss[J]. Appl Phys Lett,2008,93(18):182905.
24 Li Y C, Tjong S C. Dielectric properties of binary polyvinylidene fluo-ride/barium titanate nanocomposites and their nanographite doped hybrids[J]. Express Polym Lett,2011,5(6):526.
25 Li Y C, Tjong S C. Electrical properties of binary PVDF/clay and ternary graphite-doped PVDF/clay nanocomposites[J]. Curr Nanosci,2012,8(5):732.
26 Shri Prakash B, Varma K. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites[J]. Compos Sci Technol,2007,67(11-12):2363.
27 Dang Z M, Shen Y, Nan C W. Dielectric behavior of three-phase percolative Ni-BaTiO3-polyvinylidene fluoride composites[J]. Appl Phys Lett,2002,81(25):4814.
28 Hmar J, Majumder T, Roy J N, et al. Flexible, transparent, high dielectric and photoconductive thin films using ZnO nanosheets-multi-walled carbon nanotube-polymer nanocomposites[J]. J Alloys Compd,2015,651:82.
29 Zhou W, Chen Q, Sui X, et al. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites[J]. Composites Part A,2015,71:184.
30 Xu N, Xiao X, et al. Enhanced dielectric constant and suppressed dielectric loss of ternary composites based on Ag-P(VDF-HFP) matrix and TiO2 nanowires[J]. Ceram Int,2016,42(10):12475.
31 Liu X, Xiong C, Sun H, et al. Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites[J]. Mater Sci Eng B,2006,127(2-3):261.
32 Quan H Y, Wang G C, Xie X L, et al. Study on dielectric properties of PVDF/PZT/Terfenol-D composite[J]. New Chem Mater,2009,37(5):43(in Chinese).
权红英, 王高潮, 谢小林, 等. 高介电常数PVDF/PZT/Terfenol-D复合材料的介电性能研究[J]. 化工新型材料,2009,37(5):43.
33 Liu J, Tian G, Qi S, et al. Enhanced dielectric permittivity of a fle-xible three-phase polyimide-graphene-BaTiO3 composite material[J]. Mater Lett,2014,124:117.
34 Li Y, Shi Y, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent[J]. Composites Part A,2015,78:318.
35 Li M, Deng Y, Wang Y, et al. High dielectric properties in a three-phase polymer composite induced by a parallel structure[J]. Mater Chem Phys,2013,139(2-3):865.
36 Gu L, Liang G, Shen Y, et al. Preparation of high k expanded graphite/CaCuTi4O12/cyanate ester composites with low dielectric loss through controlling the interfacial action between conductors and ceramics[J]. Composites Part B,2014,58:66.
37 Dang Z M, Fan L Z, Shen Y,et al. Study on dielectric behavior of a three-phase CF/(PVDF+BaTiO3) composite[J]. Chem Phys Lett,2003,369(1-2):95.
38 Fakhri P, Mahmood H, Jaleh B, et al. Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller[J]. Synth Met,2016,220:653.
39 Dang Z M, Fan L Z, Shen Y, et al. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites[J]. Mater Sci Eng B,2003,103(2):140.
40 Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation[J]. Nano Energy,2016,30:407.
41 Xu J, Wong C P. Low-loss percolative dielectric composite[J]. Appl Phys Lett,2005,87(8):82907.
42 Jiao Y, Yuan L, et al. Dispersing carbon nanotubes in the unfavo-rable phase of an immiscible reverse-phase blend with Haake instrument to fabricate high-k nanocomposites with extremely low dielectric loss and percolation threshold[J]. Chem Eng J,2016,285:650.
43 Li Y, Tang J, Huang L, et al. Effective exfoliation of expanded graphite in rigid poly(methyl methacrylate) and its dispersion and enhancement in poly(vinylidene fluoride)[J]. J Nanosci Nanotech-nol,2016,15:1.
44 Wang D, Bao Y, Zha J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene[J]. ACS Appl Mater Interfaces,2012,4(11):6273.
45 Li H, Chen Z, Liu L, et al. Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss[J]. Compos Sci Technol,2015,121:49.
46 Yang C, Lin Y, Nan C W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density[J]. Carbon,2009,47(4):1096.
47 Li Y, Fan M, Wu K, et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly(vinylidene fluoride)/graphene composites[J]. Composites Part A, 2015,73:85.
48 Liu H, Shen Y, Song Y, et al. Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density[J]. Adv Mater,2011,23(43):5104.
49 Verma S K, Kumar M, Kar P, et al. Core-shell functionalized MWCNT/poly(m-aminophenol) nanocomposite with large dielectric permittivity and low dielectric loss[J]. Polym Adv Technol,2016, 27(12):1596.
50 Bi J, Gu Y, Zhang Z, et al. Core-shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss[J]. Mater Des,2016,89:933.
51 Wan Y J, Yang W H, et al. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites[J]. Compos Sci Technol,2016,122:27.
52 Ren L, et al. Dielectric and magnetic properties of Fe@FexOy/epoxy resin nanocomposites as high-performance electromagnetic insulating materials[J]. Compos Sci Technol, 2015,114:57.
53 Zhou W, Gong Y, Tu L, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluo-ride) composites[J]. J Alloys Compd,2017,693:1.
54 Kuang X, Liu Z, Zhu H. Dielectric properties of Ag@C/PVDF composites[J]. J Appl Polym Sci,2013, 129(6):3411.
55 Zhou W, Dong L, Sui X, et al. High dielectric permittivity, and low loss in PVDF filled by core-shell Zn@ZnO particles[J]. J Polym Res,2016,23(3):45.
56 Zhang L, Yuan S, Chen S, et al. Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluo-ride) composites[J]. Compos Sci Technol,2015,110:126.
57 Yu D, Xu N X, Xiao X R, et al. Electrical behavior of core-shell structured BaTiO3@Dy2O3/PVDF nanocomposites synthesized via different reaction mediums[J]. Rare Met Mater Eng,2016,45(s1):541(in Chinese).
于丹, 徐诺心, 肖兴荣, 等, 核壳结构BaTiO3@Dy2O3/PVDF纳米复合材料的合成及电性能研究[J]. 稀有金属材料与工程,2016,45(s1):541.
58 Xiao X, Xu N, Jiang Y, et al. TiO2@Ag/P(VDF-HFP) composite with enhanced dielectric permittivity and rather low dielectric loss[J]. RSC Adv,2016,6:69580.
59 Zhi X, Mao Y, Yu Z, et al. γ-Aminopropyl triethoxysilane functio-nalized graphene oxide for composites with high dielectric constant and low dielectric loss[J]. Composites Part A,2015,76:194.
60 Chu L, Xue Q, Sun J, et al. Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties[J]. Compos Sci Technol,2013,86:70.
61 Sun J, Xue Q, Guo Q, et al. Excellent dielectric properties of polyvinylidene fluoride composites based on sandwich structured MnO2/graphene nanosheets/MnO2[J]. Composites Part A,2014,67:252.
[1] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[2] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[3] 张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
[4] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[5] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[6] 邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
[7] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[8] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[9] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[10] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[11] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[12] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[13] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[14] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[15] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed