Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 500-509    https://doi.org/10.11896/cldb.201903017
  金属与金属基复合材料 |
手性超材料圆极化波吸收特性研究进展
汪丽丽, 宋健, 梁加南, 李敏华
宁波大学信息科学与工程学院,宁波 315211
Research Progress of the Absorption Characteristics of Circular Polarization Wave in Chiral Metamaterials
WANG Lili, SONG Jian, LIANG Jianan, LI Minhua
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 3415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于亚波长单元结构的人工电磁超材料具有优异的电磁/光学特性,如负折射率、超分辨率以及极化转化等,使得超材料研究成为近年量子通信、纳米光学、材料科学、能源探测等领域的前沿研究方向,其中以手性超材料的研究尤为突出。手性超材料是指与其镜像不具有几何对称性,且不可通过旋转或平移等任意操作使其与镜像重合的一种新型电磁超材料。超材料的深入研究,极大地丰富了手性结构的建模,为许多隐晦物理现象和理论分析的研究提供了更多有效的方法。手性超材料所具备的超强光学活性、圆二色性以及不对称传输等独特的电磁/光学特性,也为电磁学、物理学、材料科学、光学、声学、纳米科学以及信息科学等领域提供了全新的研究方向。
手性是手性分子的一种固有特征,也是生命体征的一种表现,在有机世界中普遍存在,诸如蛋白质、DNA、糖分子、病毒、氨基酸和液晶体等分子。然而在自然界中,手性结构十分有限,有关建模和理论分析仅停留在原始结构的表征。目前,手性超材料的研究正逐步从微波段扩展至太赫兹、红外波段,甚至光波段。
基于手性微结构的电磁超材料的实现很大程度上取决于单元结构尺寸和周期阵列排布,因此吸收带宽仍然局限于较窄的频率范围,且对左旋圆极化波(LCP)和右旋圆极化波(RCP)的识别(选择性吸收)能力较弱。随着对手性超材料的进一步研究,微波频段的差异化吸收率逐步提高到90%以上,但在高频段差异化的吸收率仍然较低。此外,随着微纳技术和纳米技术的发展,利用包括半导体材料、相变材料、高电阻/电感/电容薄膜、石墨烯在内的新型功能材料,以及结合集总元件的匹配电路控制,为实现红外、可见光波段的吸波器提供了研究空间。
本文介绍了手性超材料对圆极化波的吸收原理,着重阐述了内在手性结构、外在手性结构以及与包括半导体材料、石墨烯等其他新型功能材料相结合的手性超材料吸收光谱的研究进展。这种基于人工电磁微结构的手性吸波特性可应用于极化转化器、电磁能量收集器、红外成像等电磁/光学器件设计中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪丽丽
宋健
梁加南
李敏华
关键词:  手性超材料  左旋圆极化波  右旋圆极化波  手性吸收  圆二色性    
Abstract: Artificial electromagnetic metamaterials based on the subwavelength units structure have excellent electromagnetic/optical properties, such as negative refractive index, super-resolution and polarization conversion, making them to be the leading field in the areas of quantum communication, nano-optics, material science, energy exploration and others in recent years. Among them, the study of chiral metamaterials is particularly prominent. Chiral metamaterials refer to a new type of electromagnetic metamaterial which have no geometric symmetry and can’t be overlapped with their mirror image by rotation or translation or other operations. The further investigations of metamaterials drastically enrich the mode-ling of chiral structures, and provide more effective methods for the research of many obscure physical phenomenas and theoretical analysis. The unique electromagnetic/optical properties of chiral metamaterials, including ultra-strong optical activity, circular dichroism and asymmetric transmission, offer a fire-new research direction for electromagnetic, physics, materials science, optics, acoustics, nanoscience and information science, etc.
Chirality is considered to be an inherent feature of chiral molecules and a manifestation of vital signs that are ubiquitous in the organic world, such as proteins, DNA, sugar molecules, viruses, amino acids and liquid crystals. However, the chiral structure is extremely limited in nature, and the related modeling and theoretical analysis merely stay at the characterization of the original structure. At present, the research of chiral metamaterials is gradually expanding from microwave segment to the terahertz, infrared band, and even light wave band.
Since the realization of electromagnetic metamaterials based on chiral microstructures highly lies on the size of the cell structure and the arrangement of periodic arrays, thus the absorption bandwidth is still limited in a narrower frequency range, and the ability of recognizing (selective absorption) the left-handed circular polarized wave (LCP) and right-handed circular polarized wave (RCP) is relatively weak as well. With the further research on the chiral metamaterials, the differential absorptivity of microwave frequency band is gradually increased over 90%, while in high frequency band it is still low. In addition, with the development of micro-nano technology and nano technology, the utilization of new functio-nal materials, including semiconductor materials, phase change materials, high resistance/inductance/capacitance thin films and graphene, and matching circuits combined with lumped elements provide a research space for achieving infrared and visible wave band absorbers.
This paper introduces the principle of absorption of circular polarized waves by chiral metamaterials, and detailedly expound the research progress in the absorption spectra of chiral metamaterials of intrinsic chiral structure, the external extrinsic chiral structure and other new functional materials, including semiconductor materials, graphene, etc. The chiral absorption characteristics based on artificial electromagnetic microstructures are available in the design of electromagnetic/optical devices such as polarization converter, electromagnetic energy collector, infrared imaging and so on.
Key words:  chiral metamaterial    left-handed circular polarized wave    right-handed circular polarized wave    chiral absorption    circular dichroism
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61501269);浙江省自然科学基金(LQ16F010002);宁波市自然科学基金(2014A610144)
作者简介:  汪丽丽,2017年6月毕业于天津职业技术师范大学,获得工学学士学位。现为宁波大学信息科学与工程学院研究生,目前在李敏华导师的指导下,主要研究手性超材料传输与吸波特性。李敏华,宁波大学信息科学与工程学院,讲师,硕士研究生导师,2007年7月本科毕业于华中师范大学物理学专业,2013年7月博士毕业于华中师范大学无线电物理专业。liminhua@nbu.edu.cn
引用本文:    
汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
WANG Lili, SONG Jian, LIANG Jianan, LI Minhua. Research Progress of the Absorption Characteristics of Circular Polarization Wave in Chiral Metamaterials. Materials Reports, 2019, 33(3): 500-509.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903017  或          http://www.mater-rep.com/CN/Y2019/V33/I3/500
1 Veselago V G. Soviet Physics Uspekhi,1968,10(4),509.
2 Grimberg R. Materials Science & Engineering B,2013,178(19),1285.
3 Shelby R A, Smith D R, Schultz S. Science,2001,292(5514),77.
4 Li Z F, Zhao R K, Koschny T, et al. Applied Physics Letters,2010,97(8),081901.
5 Zhang S, Park Y S, Li J S, et al. Physical Review Letters,2009,102(2),023901.
6 Yu N F, Capasso F. Nature Materials,2014,13(2),139.
7 Alitalo P, Tretyakov S. Materials Today,2009,12(3),22.
8 Kaschke J, Blome M, Burger S, et al. Optics Express,2014,22(17),19936.
9 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters,2008,100(20),207402.
10 Watts C M, Liu X L, Padilla W J. Advanced Materials,2012,24(23),OP98.
11 Almoneef T S, Ramahi O M. Applied Physics Letters,2015,106(15),153902.
12 Unal E, Dincer F, Tetik E, et al. Journal of Materials Science Materials in Electronics,2015,26(12),9735.
13 Applequist J. American Scientist,1987,75(1),58.
14 Plum E, Fedotov V A, Zheludev N I. Journal of Optics A Pure & Applied Optics,2009,11(7),074009.
15 Asadchy V S, Faniayeu I A, Ra’Di Y, et al. Physical Review X,2015,5(3),031005.
16 Yin X, Long C, Li J H, et al. Scientific Reports,2015,5,15367.
17 Tao H, Bingham C M, Strikwerda A C, et al. Physical Review B,2008,78(24),241103.
18 Xu H X, Wang G M, Qi M Q, et al. Physical Review B,2012,86(20),205104.
19 Kang L, Jiang Z H, Yue T W, et al. Scientific Reports,2015,5,12224.
20 Shinobu F, Ishikura N, Arita Y, et al. Optics Express,2011,19(14),13557.
21 Lin H, Yang D, Han S, et al. Optics Express,2016,24(26),30068.
22 Jia X L, Meng Q X, Yuan C X, et al. Physics of Plasmas,2016,23(3),032103.
23 Li M H, Guo L Y, Dong J F, et al. Journal of Physics D Applied Physics,2014,47(18),185102.
24 Tang B, Li Z Y, Palacios E, et al. IEEE Photonics Technology Letters,2017,29(3),295.
25 Wang J, Shen Z X, Wu W. Applied Physics Letters,2017,111(11),113503.
26 Tang J Y, Xiao Z Y, Xu K K, et al. Optical & Quantum Electronics,2016,48(2),111.
27 Kaschke J, Blume L, Wu L, et al. Advanced Optical Materials,2015,3(10),1411.
28 Zhang Y Y, Wang L, Zhang Z Y. IEEE Photonics Journal,2017,9(2),4800407.
29 Liu Y Y, Yu X S. Applied Optics,2017,56(22),6263.
30 Sato N, Tatsumi Y, Saito R. Physical Review B,2017,95(15),155436.
31 Li M H, Song J, Wu F. Journal of Magnetism & Magnetic Materials,2017,426,150.
32 Dong J F, Zhou J F, Koschny T, et al. Optics Express,2009,17(16),14172.
33 Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Physical Review Letters,2006,97(16),167401.
34 Li, Z F, Mutlu M, Ozbay E. Journal of Physics D Applied Physics,2014,47(7),075107.
35 Row J S. IEEE Transactions on Antennas & Propagation,2005,53(6),1967.
36 Lerner D A. IEEE Transactions on Antennas & Propagation,2003,13(1),3.
37 Ramahi O M, Almoneef T S, Alshareef M, et al. Applied Physics Letters,2012,101(17),173903.
38 Wang B N, Zhou J F, Koschny T, et al. Journal of Optics A Pure & Applied Optics,2009,11(11),114003.
39 Zhao R K, Koschny T, Soukoulis C M. Optics Express,2010,18(14),14553.
40 Wang B N, Koschny T, Soukoulis C M. Physical Review B,2009,80(3),033108.
41 Faniayeu I, Mizeikis V. Optical Materials Express,2017,7(5),1453.
42 Jaggard D L, Mickelson A R, Papas C H. Applied Physics,1979,18(2),211.
43 Wang Z J, Jia H, Yao K, et al. ACS Photonics,2016,3(11),2096.
44 Shang S, Yang S Z, Liu J, et al. Journal of Applied Physics,2016,120(4),045106.
45 Jing L Q, Wang Z J, Yang Y H, et al. Applied Physics Letters,2017,110(23),231103.
46 Gansel J K, Thiel M, Rill M S, et al. Science,2009,325(5947),1513.
47 Mutlu M, Akosman A E, Serebryannikov A E, et al. Optics Letters,2011,36(9),1653.
48 Gao W S, Ng C Y, Leung H M, et al. Journal of the Optical Society of America B,2012,29(11),3021.
49 Zhang Y Y, Wang L, Zhang Z Y. IEEE Photonics Journal,2017,9(2),4800407.
50 Sun P, Williams J D. IEEE Photonics Journal,2012,4(4),1155.
51 Cao T, Wei C W, Mao L B, et al. Scientific Reports,2014,4,7442.
52 Fedotov V A, Rogacheva A V, Zheludev N I, et al. Applied Physics Letters,2006,88(9),091119.
53 Plum E, Zheludev N I. Applied Physics Letters,2015,106(22),221901.
54 Plum E. Applied Physics Letters,2016,108(24),241905.
55 Zhang Q, Gong J B, Oh C H. Physical Review A,2010,81(2),023608.
56 Ubrig N, Crassee I, Levallois J, et al. Optics Express,2013,21(21),24736.
57 Sounas D L, Caloz C. IEEE Transactions on Microwave Theory & Techniques,2012,60(4),901.
58 Sheng D N, Sheng L, Weng Z Y. Physical Review B,2006,73(23),233406.
59 Liu H Q, Ren G B, Gao Y X, et al. Journal of Nanophotonics,2016,10(2),026004.
60 Pu M B, Chen P, Wang Y Q, et al. Optics Express,2013,21(10),11618.
61 Wang M, Wang Y Q, Pu M B, et al. Journal of Applied Physics,2014,115(15),154312.
62 Yang K P, Wang M, Pu M B, et al. Scientific Reports,2016,6,23897.
63 Rashidi A, Namdar A, Abdighaleh R. Applied Optics,2017,56(21),5914.
64 Li W, Coppens Z J, Besteiro L V, et al. Nature Communications,2015,6,8379.
[1] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[2] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[3] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[4] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[5] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[10] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[11] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[12] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[13] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[14] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[15] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed