Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22092-22097    https://doi.org/10.11896/cldb.20080213
  无机非金属及其复合材料 |
电石渣稳定土抗压强度影响因素及预估模型研究
栗培龙1,2, 裴仪2, 胡晋川3, 胡伟2
1 长安大学道路结构与材料交通行业重点实验室,西安 710064
2 长安大学公路学院,西安 710064
3 山西省交通规划勘测设计院有限公司,太原 030032
Research on Influencing Factors and Prediction Model of Compressive Strength of Carbide Slag Stabilized Soil
LI Peilong1,2, PEI Yi2, HU Jinchun3, HU Wei2
1 Key Laboratory of Road Structure & Material Ministry of Transport, Chang'an University, Xi'an 710064, China
2 School of Highway, Chang'an University, Xi'an 710064, China
3 Shanxi Transportation Planning Survey and Design Institute Co., Ltd., Taiyuan 030032, China
下载:  全 文 ( PDF ) ( 3602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电石渣是一种工业废料,可用于制备电石渣稳定土(Carbide slag stabilized soil,CS)。本研究以粉黏质黄土为稳定对象,分析了试件压实度、养生龄期和电石渣含量等因素对CS无侧限抗压强度的影响,并建立了包含养生龄期(T)、孔隙率(n)和电石渣体积率(Civ)等因子的无侧限抗压强度(Rc)的电石渣稳定土强度预估模型。结果表明:CS试件无侧限抗压强度随压实度的增加呈线性增长,随养生龄期的延长呈对数型增加,同时随电石渣含量的增加显著提升。该模型能较好地预测CS试件的无侧限抗压强度,预估强度同实测强度误差绝对值在0.25 MPa之内,相对误差小于20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗培龙
裴仪
胡晋川
胡伟
关键词:  电石渣土  无侧限抗压强度  敏感性  养生龄期  强度预估模型    
Abstract: Carbide slag, an industrial waste, can be used to prepare carbide slag stabilized soil (CS). In this paper, the effects of compactness, curing time and calcium carbide slag content on the unconfined compressive strength of CS specimens were analyzed with the carbide slag solidified silty clay as the research object. A prediction model of unconfined compressive strength (Rc) of CS specimens was established considering curing time (T), porosity (n) and volume ratio of carbide slag (Civ). The results show that the unconfined compressive strength of CS specimen rises linearly with the increase of compactness and logarithmically with the extension of curing time, while the increase of carbide slag content has a significant improvement on the unconfined compressive strength of CS specimen. In addition, the verification analysis found that the model can better predict the compressive strength of CS specimens. The absolute error between the estimated strength and the measured strength is within 0.25 MPa, and the relative error does not exceed 20%.
Key words:  calcium carbide slag    unconfined compressive strength    sensitivity    curing time    strength prediction model
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU411  
基金资助: 国家自然科学基金(51878061)
通讯作者:  lipeilong@chd.edu.cn   
作者简介:  栗培龙,长安大学公路学院教授,博士生导师,University of California at Davis(UC Davis)访问学者,注册公路检测工程师(公路、材料)。现任公路学院机场工程系主任、道路结构与材料交通行业重点实验室副主任。主要从事路面/道面材料结构与性能研究,研究方向包括: 新型高性能、环保型路面材料研究与开发,沥青混合料微细观力学作用行为及机理,沥青改性作用机理及动力学特性, 新型道路养护材料与技术等。
引用本文:    
栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
LI Peilong, PEI Yi, HU Jinchun, HU Wei. Research on Influencing Factors and Prediction Model of Compressive Strength of Carbide Slag Stabilized Soil. Materials Reports, 2021, 35(22): 22092-22097.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080213  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22092
1 Li Y X, Zhang J S, Cao Y D, et al. Inorganic Chemicals Industry, 2018, 50(4),49(in Chinese).
李彦鑫, 张金山, 曹永丹, 等.无机盐工业, 2018, 50(4), 49.
2 Jiang M, Huang X F, Liu H P, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(12), 4025(in Chinese).
蒋明, 黄小凤, 刘红盼, 等.硅酸盐通报, 2016, 35(12),4025.
3 Qin X G, Du Y J, Liu S Y, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(S1),175(in Chinese).
覃小纲, 杜延军, 刘松玉, 等.岩土工程学报,2013, 35(S1),175.
4 Vichan S, Rachan R.Soils and Foundations, 2013, 53(2), 272.
5 Du Y J, Liu S Y, Wei M L, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6),1278(in Chinese).
杜延军, 刘松玉, 魏明俐, 等.岩石力学与工程学报, 2014, 33(6), 1278.
6 Noolu V, Mudavath H, Pillai R J, et al. Construction and Building Materials, 2019, 223,441.
7 Li W, Yi Y, Puppala A J.Soils and Foundations, 2019, 59(5),1496.
8 Du Y J, Liu S Y, Qin X G, et al. Journal of Southeast University (Natural Science Edition), 2014, 44(2),375(in Chinese).
杜延军, 刘松玉, 覃小纲, 等.东南大学学报(自然科学版), 2014, 44(2),375.
9 Du Y J, Jiang N J, Liu S Y, et al. Soils and Foundations, 2016, 56(2), 301.
10 Liu Y, Chang C W, Namdar A, et al. Construction and Building Mate-rials, 2019, 221, 1.
11 Zhang Y Y, Cheng Z H, Zhou P Y, et al. Journal of China & Foreign Highway, 2017, 37(3), 234(in Chinese).
张莹莹, 程志豪, 周沛延, 等.中外公路, 2017, 37(3), 234.
12 Baldovino J D J A, Izzo R L D S, Moreira E B, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4), 882.
13 Consoli N C, Festugato L, Da Rocha C G, et al. Construction and Buil-ding Materials, 2013, 49, 591.
14 Li S Z, Guan Y H, Jing W B, et al. Highway, 2020, 65(2), 230(in Chinese).
李少祯, 管延华, 井文波, 等.公路, 2020, 65(2), 230.
15 Silvani C, Braun E, Masuero G B, et al. Procedia Engineering, 2016, 143, 220.
16 Consoli N C, Saldanha R B, Mallmann J E C, et al. Construction and Building Materials, 2017, 157, 65.
[1] 宋少民, 王宇杰, 李统彬. 新型胶凝材料体系的抗裂性能[J]. 材料导报, 2021, 35(Z1): 206-210.
[2] 罗学昆, 赵春玲, 查小晖, 郭婧, 王欣, 汤智慧, 宇波. 喷丸对TB6钛合金疲劳应力集中敏感性的影响[J]. 材料导报, 2021, 35(12): 12114-12118.
[3] 肖虎, 黄峰, 彭志贤, 戈方宇, 刘静. Ti-Mg-Al复合脱氧X70级抗酸海底管线钢氢捕获效率及HIC敏感性[J]. 材料导报, 2021, 35(10): 10158-10165.
[4] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[5] 张俊喜, 易湘斌, 沈建成, 陈百明, 李保栋, 徐创文. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响[J]. 材料导报, 2020, 34(24): 24092-24096.
[6] 李悦, 赵冰垠, 黄舟, 吴玉生, 金彩云, 蔡博群. 低泥土敏感性聚羧酸减水剂的制备[J]. 材料导报, 2020, 34(22): 22185-22189.
[7] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[8] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[9] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[10] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[11] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[12] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[13] 肖靖,易幼平,崔金栋,黄始全. 7085铝合金的淬火敏感性[J]. 《材料导报》期刊社, 2018, 32(12): 1998-2002.
[14] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[15] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed