Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10158-10165    https://doi.org/10.11896/cldb.20040056
  金属与金属基复合材料 |
Ti-Mg-Al复合脱氧X70级抗酸海底管线钢氢捕获效率及HIC敏感性
肖虎1,2, 黄峰1,2, 彭志贤1,2, 戈方宇1,2, 刘静1,2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉科技大学,湖北省海洋工程材料及服役安全工程技术研究中心,武汉 430081
Hydrogen Trapping Efficiency and HIC Sensitivity of Ti-Mg-Al Composite Deoxidized X70 Acid Resistant Submarine Pipeline Steel
XIAO Hu1,2, HUANG Feng1,2, PENG Zhixian1,2, GE Fangyu1,2, LIU Jing1,2
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Engineering Technology Research Centre of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 5904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用NACE TM 0284-2016标准评估了一系列不同Al含量的Ti-Mg-Al复合脱氧X70级别抗酸海底管线试验钢的氢致开裂(HIC)敏感性,并通过测量氢扩散通量(JL)和有效氢扩散系数(Deff)研究了其氢捕获及扩散动力学行为。结果表明:Al的添加因能促进针状铁素体形成而显著提高试验钢的抗拉强度;随着Al含量增加,试验钢中的夹杂物不仅数量增加,成分也发生变化,由以均匀分布的单一Mn-S和Al-Ti-Mg-O-Mn-S复合夹杂物为主转向以带状分布的单一Al-O夹杂和Al-Ti-O-Mn-S型复合夹杂为主;当Al含量增加至0.03%时,试验钢的屈服强度降低,且[H]容易在脆性Al2O3夹杂物周围引发内部微裂纹,并产生表面氢鼓泡。Al的添加主要是通过影响钢中非金属夹杂物的特性,从而改变氢在钢中的捕获和扩散动力学行为,进而影响钢的HIC敏感性。在本实验范围内,Al的添加量不宜超过0.03%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖虎
黄峰
彭志贤
戈方宇
刘静
关键词:  Ti-Mg-Al复合脱氧  X70 MOS管线钢  非金属夹杂物  HIC敏感性    
Abstract: NACE TM 0284-2016 standard was used to evaluate the hydrogen induced cracking (HIC) susceptibility of series of X70 grade anti-acid submarine Ti-Mg-Al composite deoxidization tested pipeline steels with different Al contents. The hydrogen diffusion kinetic behavior of X70 MOS pipeline steel was investigated through measuring the permeability (JL) and the apparent hydrogen diffusivity (Deff). The results indicated that the tensile strength of tested steels could be improved significantly due to the formation of acicular ferrite by the addition of Al. With increasing of Al contents, the amount of inclusions increased significantly, and single Mn-S and Al-Ti-Mg-O-Mn-S compound inclusions with uniform distribution changed into single Al-O and Al-Ti-O-Mn-S compound inclusions with chain distribution. When the content of Al was up to 0.03%, the yield strength of tested steel decreased, and H could be easily trapped around the brittle Al2O3 inclusions, and then caused internal microcracks and hydrogen bubbles on the surface of tested steel. The addition of Al for Ti-Mg composite deoxidization steel mainly made the characteristics of non-metallic inclusions happen, and then changed the dynamic behavior of hydrogen diffusion, finally affected the HIC susceptibility of tested steels. In this research range, the addition amount of Al should not exceed 0.03%.
Key words:  Ti-Mg-Al composite deoxidization    X70 MOS pipeline steel    non-metallic inclusions    HIC susceptibility
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51871172);湖北省中央引导地方科技发展专项(2018ZYYD026)
通讯作者:  huangfeng@wust.edu.cn   
作者简介:  肖虎,硕士研究生。2019年毕业于武汉科技大学,获得学士学位。2019年9月至今在武汉科技大学材料与冶金学院攻读硕士学位,主要从事高性能钢铁材料服役安全方面的研究。
黄峰,博士,武汉科技大学三级教授、博士研究生导师。中国腐蚀与防护学会理事、湖北省腐蚀与防护学会副理事长、中国腐蚀与防护学会腐蚀电化学与测试技术专业委员会和材料敏感断裂专业委员会委员。2003年获武汉大学理学博士学位,2013—2014年间赴美国密歇根州立大学交流访问。主要从事金属材料表面与界面、金属材料微观组织与耐蚀性、相微区电化学等方面的研究。主持和参加国家自然科学基金、科技部基础平台建设、湖北省自然科学基金、湖北省科技支撑计划等20余项项目。发表研究论文80余篇,其中SCI收录40余篇,单篇被引次数超过150余次,授权发明专利5项。
引用本文:    
肖虎, 黄峰, 彭志贤, 戈方宇, 刘静. Ti-Mg-Al复合脱氧X70级抗酸海底管线钢氢捕获效率及HIC敏感性[J]. 材料导报, 2021, 35(10): 10158-10165.
XIAO Hu, HUANG Feng, PENG Zhixian, GE Fangyu, LIU Jing. Hydrogen Trapping Efficiency and HIC Sensitivity of Ti-Mg-Al Composite Deoxidized X70 Acid Resistant Submarine Pipeline Steel. Materials Reports, 2021, 35(10): 10158-10165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040056  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10158
1 An C G, Niu T, Wu X L, et al. Journal of Iron and Steel Research, 2018(5), 405(in Chinese).
安成钢, 牛涛, 吴新朗, 等. 钢铁研究学报, 2018(5), 405.
2 Gao X D, Shao Y B, Xie L Y,et al. Materials Reports B: Research Papers, 2020,34 (1), 2123. (in Chinese).
高旭东, 邵永波, 谢丽媛,等. 材料导报:研究篇, 2020,34(1), 2123.
3 Gan L J, Huang F, Zhao X Y, et al.International Journal of Hydrogen Energy, 2018,43(4), 2293.
4 Mohtadi-Bonab M A, Ghesmati-Kucheki H.Metals and Materials International, 2019,25, 1109.
5 Peng Z, Liu J, Huang F, et al.Steel Research International, 2018, 89(7), 1700566.
6 Yuan W, Huang F, Gan L J, et al.Journal of Chinese Society for Corrosion and Protection, 2020, 39(6), 536(in Chinese).
袁玮, 黄峰, 甘丽君, 等.中国腐蚀与防护学报, 2020, 39(6), 536.
7 Yu J F, Yang G, Wang J, et al. Materials for Mechanical Engineering, 2018, 42(5), 31(in Chinese).
于俊峰, 杨光, 王晶, 等.机械工程材料, 2018, 42(5), 31.
8 Huang B S, Chen P, Lu J. Journal of Functional Materials, 2016, 47(8), 8114(in Chinese).
黄本生, 陈鹏, 卢杰.功能材料, 2016, 47(8), 8114.
9 Xue H B, Cheng Y F. Corrosion Science, 2011, 53(4), 1201.
10 Dong C F, Li X G, Liu Z Y, et al. Journal of Alloys and Compounds, 2009, 484(1-2), 966.
11 Wang L, Yang S, Li J, et al. Metallurgical and Materials Transactions: B, 2017, 48(2), 805.
12 Zhang T, Li Y, Mu H, et al. Metallurgical Research & Technology, 2017, 114(3), 306.
13 NACE-TM 0284-2016. Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International First Service Department, 2016.
14 Gan L J. Hydrogen induced cracking and hydrogen capture behavior of X100 pipeline steel welded joint in H2S environment, Master's Thesis, Wuhan University of Science and Technology, China, 2018 (in Chinese).
甘丽君. X100管线钢焊接接头在H2S环境下氢致开裂及氢捕获行为研究. 硕士学位论文, 武汉科技大学, 2018.
15 Liu Z Y, Li X G, Du C W, et al.Corrosion Science, 2009, 51(4), 895.
16 Liu Y, Li G, Wan X, et al.Materials Science and Technology, 2017,33(15), 1.
17 Tian J Y, Xu G, Zhou M X, et al.Metals, 2017, 7(2), 40.
18 Zheng W, Fu X H, Qu Y, et al.Journal of Wuhan University of science and Technology, 2017 (2), 81(in Chinese).
郑万, 付学好, 瞿勇, 等.武汉科技大学学报, 2017 (2), 81.
19 Xiao Y, Wang G, Lei H, et al.Journal of Alloys and Compounds, 2020, 813, 152243.
20 Chen Y S, Lu H Z, Liang J T, et al. Science, 2020, 367, 171.
21 Xie F, Wang X F, Wang D,et al. Materials Reports A: Review Papers, 2018(9), 1541 (in Chinese).
谢飞, 王兴发, 王丹, 等. 材料导报:综述篇, 2018(9), 1541.
22 Qu Y M, Huang F, Liu J, et al.Chinese Journal of Materials Research, 2010, 24(5), 508(in Chinese).
曲炎淼,黄峰,刘静, 等.材料研究学报, 2010,24(5), 508.
23 Peng X H. Study on HIC behavior of pipeline steel with different microstructure. Master's Thesis, Wuhan University of Science and Technology, China, 2013 (in Chinese).
彭先华. 不同微观结构管线钢氢致开裂(HIC)行为研究. 硕士学位论文, 武汉科技大学, 2013.
24 Al-Mansour M, Alfantazi A M, El-Boujdaini M.Materials & Design, 2009, 30(10), 4088.
25 Guo H R, Gao G H, Gui X L,et al. Materials Reports B: Research Papers, 2019, 33(10),126 (in Chinese).
郭浩冉, 高古辉, 桂晓露, 等. 材料导报:研究篇, 2019, 33(10), 126.
26 Findley K O, O'Brien M K, Nako H. Materials Science and Technology, 2016, 32(1), 1.
27 Huang F, Liu J, Deng Z J, et al.Materials Science and Engineering: A, 2010, 527(26), 6997.
[1] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[2] 杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
[3] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[4] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[5] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[6] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[7] 桂晓露, 王琨, 苏浩, 高古辉, 白秉哲. 重载铁路用贝氏体钢轨显微组织定量表征[J]. 材料导报, 2020, 34(22): 22136-22141.
[8] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[9] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[10] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[11] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[12] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[13] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[14] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[15] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed