Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6131-6134    https://doi.org/10.11896/cldb.20010098
  金属与金属基复合材料 |
原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理
陈永庆1, 闫英杰1, 曹睿1, 刘刚1, 秦巍2,3, 车洪艳2,3, 王铁军2,3
1 兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 中国钢研科技集团有限公司,安泰科技股份有限公司,北京 100081
3 河北省热等静压工程技术研究中心,涿州 072750
Mechanism of the Effect of Prior Particle Boundary on Impact Toughness of FeCrAl Alloy
CHEN Yongqing1, YAN Yingjie1, CAO Rui1, LIU Gang1, QIN Wei2,3, CHE Hongyan2,3, WANG Tiejun2,3
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology,Lanzhou 730050, China
2 Advanced Technology & Materials Limited Company, China Iron & Steel Research Institute Group, Beijing 100081, China
3 Engineering and Technology Research Center of Hot Isostatic Pressing, Zhuozhou 072750, China
下载:  全 文 ( PDF ) ( 7687KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉末冶金制备的FeCrAl合金中存在的原始粉末颗粒边界对合金力学性能及断裂机制的影响目前尚不明确。本工作通过显微组织分析及扫描电镜原位拉伸试验,系统研究了FeCrAl合金中原始粉末颗粒边界对合金冲击韧性的影响机理。结果表明:粉末冶金制备的FeCrAl合金中原始粉末颗粒边界析出相主要为Nb的碳氮化物,在受力变形过程中,裂纹沿原始粉末颗粒边界处Nb的碳氮化物萌生并扩展,造成合金局部发生脆性沿晶断裂,从而导致粉末冶金制备的FeCrAl合金晶界强度较低、冲击韧性较差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈永庆
闫英杰
曹睿
刘刚
秦巍
车洪艳
王铁军
关键词:  FeCrAl合金  原始粉末颗粒边界  Nb的碳氮化物  冲击韧性  原位拉伸    
Abstract: The effect of prior particle boundary (PPB) in the FeCrAl alloy prepared by powder metallurgy on the impact toughness is undefined. Mechanism about the effect of PPB on the impact toughness of FeCrAl alloy was investigated by microstructure analysis and in-situ tensile test. The results showed that prior particle boundary precipitations were mainly niobium carbonitrides. During deformation, cracks initiation and propagation in niobium carbonitrides along prior particle boundaries and lead to partial intergranular fracture, low grain-boundary strength and brittle fracture of FeCrAl alloy prepared by powder metallurgy.
Key words:  FeCrAl alloy    prior particle boundary    niobium carbonitrides    impact toughness    in-situ tensile test
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51961024;51761027)
通讯作者:  yjyan@lut.edu.cn   
作者简介:  陈永庆,2017年就读于兰州理工大学,师从曹睿教授和闫英杰副研究员,攻读硕士学位。主要研究方向为FeCrAl合金的制备及组织性能研究。
闫英杰,兰州理工大学副研究员。2015年于北京科技大学获得博士学位。主要从事材料强韧性方向的研究。 于坤,新疆大学2017级硕士研究生,主要从事钛合金表面激光再制造和材料表面改性的研究。
祁文军,西南交通大学硕士,教授,主要从事材料加工领域中的数字化设计与应用。
引用本文:    
陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
CHEN Yongqing, YAN Yingjie, CAO Rui, LIU Gang, QIN Wei, CHE Hongyan, WANG Tiejun. Mechanism of the Effect of Prior Particle Boundary on Impact Toughness of FeCrAl Alloy. Materials Reports, 2021, 35(6): 6131-6134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010098  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6131
1 Hu H L, Zhou Z J, Li M, et al. Corrosion Science,2012,65,209.
2 Klueh R L, Shingledecker J P, Swindeman R W, et al. Journal of Nuc-lear Materials,2005,341(2-3),103.
3 Wang Z D, Gong Y S. Electrothermic alloy, Chemical Industry Press, China,2006(in Chinese).
王振东,宫元生编著.电热合金,化学工业出版社,2006.
4 Zhang G X, Han S B, Sun Z K. Powder Metallurgy Industry,2015,25(1),42.
张国星,韩寿波,孙志坤.粉末冶金工业,2015,25(1),42.
5 Hou J, Dong J X, Yao Z H, et al. Materials Science and Engineering A,2018,724,17.
6 Chen Z H, Chen D. Principles of modern powder metallurgy, Chemical Industry Press, China,2013(in Chinese).
陈振华,陈鼎.现代粉末冶金原理,化学工业出版社,2013.
7 Zhang Y W, Liu J T. Materials China,2013(1),1(in Chinese).
张义文,刘建涛.中国材料进展,2013(1),1.
8 Rao G A, Srinivas M, Sarma D S. Materials Science & Engineering A,2006,435-436,84.
9 Liu M D, Zhang Y, Liu P, et al. Powder Metallurgy Industry,2006(3),1(in Chinese).
刘明东,张莹,刘培英,等.粉末冶金工业,2006(3),1.
10 Wang M Y, Ji Z, Zhang Y F, et al. Powder Metallurgy Technology,2017(2),142(in Chinese).
王梦雅,纪箴,张一帆,等.粉末冶金技术,2017(2),142.
11 Zhang Y W, Liu J T, Han S T, et al. Powder Metallurgy Industry,2014(5),1(in Chinese).
张义文,刘建涛,韩寿波,等.粉末冶金工业,2014(5),1.
12 Bai Q, Lin J, Tian G, et al. Journal of Powder Metallurgy and Mining,2015,4,127.
13 Ma W B, Liu G Q, Hu B F, et al. Materials Science and Engineering of Powder Metallurgy,2013(1),1(in Chinese).
马文斌,刘国权,胡本芙,等.粉末冶金材料科学与工程,2013(1),1.
14 Yong Q L. Secondary phases in steels, Metallurgical Industry Press, China,2006(in Chinese).
雍岐龙.钢铁材料中的第二相,冶金工业出版社,2006.
[1] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[2] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[3] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[4] 徐仰涛, 王永红, 马宏利. 钴及钴基合金拉伸和压缩变形机理的研究现状[J]. 材料导报, 2020, 34(19): 19117-19121.
[5] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[6] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[7] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[8] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[9] 张海燕,曹 睿,车洪艳,刘国辉,陈剑虹. Stellite12钴基合金热循环冲击前后拉伸断裂机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 156-160.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed