Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19117-19121    https://doi.org/10.11896/cldb.19050142
  金属与金属基复合材料 |
钴及钴基合金拉伸和压缩变形机理的研究现状
徐仰涛1,2, 王永红1,2, 马宏利1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research Status of Tensile and Compression Deformation Mechanism of
Cobalt and Cobalt Based Alloys
XU Yangtao1,2, WANG Yonghong1,2, MA Hongli1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与镍基高温合金相比,钴基高温合金的高温抗热腐蚀性能、抗热疲劳性能和焊接性等更优越,工作温度更高,因而受到研究者的广泛关注,但高温强度不及镍基高温合金使其应用受限。与传统钴基高温合金相比,新型钴基高温合金由于具有与镍基高温合金相似的γ/γ′共格强化组织而受到人们的青睐,有望替代镍基高温合金,成为新型的合金体系,而进一步提高新型钴基高温合金的拉伸和压缩性能,是拓展合金应用领域必须解决的问题。
对纯钴的拉伸和压缩性能已有较详细的报道,纯钴的密排六方晶体结构会导致钴基合金的塑性较差。近年来,研究者们不断地研究如何提高新型钴基高温合金中γ′相的稳定性及拉伸和压缩性能。目前,新型钴基高温合金的延伸率已达到18%左右。
新型钴基高温合金压缩变形时出现反常屈服现象是由于螺型位错的交滑移被钉扎,它的驱动力来源于弹性各向异性能和{100}面上较低的反相畴界能。在反常应力峰值附近,位错被限制在γ基体中,偶尔观察到位错切过γ′相。同时,在拉伸加载时也发现了高温反常屈服现象。此外,以三元Co-Al-W合金为基础,通过加入微合金元素(如Mo、Mg、Ce等),可以使新型钴基高温合金的延伸率逐步提高。
本文归纳了钴及钴基合金拉伸和压缩变形机理的研究现状。通过介绍密排六方(HCP)金属钴的滑移变形、孪生变形以及钴的变形机制和不同形变孪晶的特征,以钴基合金的塑性变形机理为主线,重点对钴基高温合金的压缩和拉伸变形,特别是由γ/γ′共格强化的钴基高温合金的反常流变应力,及在室温和高温拉伸条件下合金的塑性变形和破坏模式进行阐述。最后,提出了新型钴基高温合金塑性变形方面有待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐仰涛
王永红
马宏利
关键词:  位错滑移  孪生  Co-Al-W基高温合金  反常屈服现象  原位拉伸    
Abstract: Cobalt-based superalloys are superior to nickel-based superalloys in terms of their high temperature thermal corrosion resistance, thermal fatigue resistance and weldability. Their working temperatures are higher, which is widely concerned by researchers. However, its high tempe-rature strength is lower than that of nickel-based superalloys, which limits its application range. Compared with traditional cobalt-based superalloys, the new cobalt-based superalloys are favored by people because of their γ/γ′ coherent strengthening structure similar to the nickel-based superalloys. It is expected to replace nickel-based superalloys and become a new alloy system, but further improvement of the tensile and compressive properties of the new cobalt-based superalloys is a problem that must be solved in expanding the application of alloys.
The studies on the tensile and compressive properties of pure cobalt have been reported in detail. The recent years, researchers have been constantly researching how to improve the γ′ phase stability of new cobalt-based superalloys, as well as the tensile and compressive properties of the alloy. At present, the elongation of the new cobalt-based superalloys has reached about 18%.
The abnormal yield phenomena of a new cobalt-based superalloy is caused by the cross-slip of screw dislocations pinned in the compression deformation. Its driving force is derived from the elastic anisotropy energy and the lower anti-phase boundary energy (APB) on {100} plane. Near the peak value of abnormal stress, dislocations are confined to the γ matrix, and occasionally the dislocations cut through the γ′ phase are observed. And abnormal yield phenomena is also found under tensile loading at high temperature. In addition, based on ternary Co-Al-W alloy, the elongation of the new Co-based superalloy can be gradually improved by adding micro-alloying elements, such as Mo, Mg, Ce, etc.
This paper summarizes the research status of the tensile and compressive deformation mechanism of cobalt and cobalt-based alloys. By introducing the slip deformation, twinning deformation, deformation mechanism and the characteristics of different deformation twins of close-packed hexagonal (HCP) cobalt metal. The plastic deformation mechanism of cobalt-based superalloys is taken as the main line, and the compression and tensile deformation of cobalt-based superalloys are emphasized, especially the anomalous flow stress of cobalt-based superalloys streng-thened by γ/γ′ conformity, and the plastic deformation and failure modes of alloys under room temperature and high temperature tensile conditions are described. Finally, the problems to be solved are put forward in the plastic deformation of the new cobalt-based superalloy.
Key words:  dislocation slip    twin    Co-Al-W based superalloy    abnormal yield phenomena    in-situ tension
                    发布日期:  2020-11-05
ZTFLH:  TG146.1+6  
基金资助: 国家自然科学基金(51561019)
通讯作者:  lanzhouxuyt@163.com   
作者简介:  徐仰涛,中共党员,工学博士,教授。2015年在兰州理工大学/方大炭素新材料科技股份有限公司联合站从事博士后科研工作。现任白银新材料研究院院长。兼任Solar Energy Materials & Solar Cells和《稀有金属》审稿人,甘肃省循环经济专家委员会委员。主要从事钴基合金制备及性能、有色金属电结晶及太阳能储热炭素材料的研究工作。主持完成国家自然科学基金和甘肃省重大科技专项项目等国家、省级科技专项项目、企业横向课题10余项;主持并完成国家重点实验室开放基金2项。在Solar Energy Materials & Solar CellsSurface & Coatings TechnologyChina Welding、《稀有金属材料与工程》和《中国有色金属学报》等国内外著名期刊上发表论文40余篇,其中SCI/EI检索论文近30余篇。研究成果获得(第一获奖人)厅级科技进步二等奖、三等奖各1项,以主要参加人身份获得甘肃省技术发明二等奖和地厅级一等奖各1项;指导学生获得国家和省级奖励3项;获得省部级、地厅级人才扶持项目4项。
引用本文:    
徐仰涛, 王永红, 马宏利. 钴及钴基合金拉伸和压缩变形机理的研究现状[J]. 材料导报, 2020, 34(19): 19117-19121.
XU Yangtao, WANG Yonghong, MA Hongli. Research Status of Tensile and Compression Deformation Mechanism of
Cobalt and Cobalt Based Alloys. Materials Reports, 2020, 34(19): 19117-19121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050142  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19117
1 Sato J, Omori T, Oikawa K. Science,2006,312(5770),90.
2 Xiao L. Rare Metal Materials and Engineering,1995(6),21(in Chinese).
肖林.稀有金属材料与工程,1995(6),21.
3 Zhu Y T. Study on annealing structure and deformation twin of polycrystalline pure cobalt after dynamic plastic deformation. Doctor's Thesis, Chongqing University, China,2012(in Chinese).
朱玉涛.多晶纯钴在动态塑性变形后的退火组织及变形孪晶研究.博士学位论文,重庆大学,2012.
4 Liu Q. Acta Metallurgica Sinica,2010,46(11),1458(in Chinese).
刘庆.金属学报,2010,46(11),1458.
5 Christian J W, Mahajan S. Progress in Materials Science,1995,39(1-2),1.
6 Lu K, Hansen N. Scripta Materialia,2009,60(12),1033.
7 Yoo M H. Metallurgical and Materials Transactions A,1981,12(3),409.
8 Zhang X Y, Zhu Y T, Liu Q. Scripta Materialia,2010,63(4),387.
9 Barnett M R, Keshavarz Z, Beer A G, et al. Acta Materialia,2008,56(1),5.
10 Holt R T. High temperature deformation of cobalt single crystals. Ph.D. Thesis, The University of British Columbia, Britain,1968.
11 Holt R T, Teghtsooman E. Metallurgical Transactions,1972,3,1621.
12 Holt R T, Teghtsooman E. Metallurgical Transactions,1972,3,2443.
13 Martinez M, Fleurier G, Chmelík F, et al. Materials Characterization,2017,134,76.
14 Sanderson C C. Deformation of polycrystalline cobalt. Ph.D. Thesis, The University of British Columbia, Britain,1972.
15 Jacquerie J M, Habraken L. Cobalt,1986,38,38.
16 Beckers H, Fontains L, Tougarinoff B, et al. Cobalt,1964,25,171.
17 Feltham P, Myers T. Philosophical Magazine,1963,8(86),203.
18 Paul B, Kapoor R, Chakravartty J K, et al. Scripta Materialia,2009,60,104.
19 Sakai T, Jonas J J. Acta Metallurgica,1984,32(2),189.
20 Gao W, Belyakov A, Miura H, et al. Materials Science & Engineering A (Structural Materials, Properties, Microstructure and Processing),1999,265(1-2),233.
21 Sun Q, Zhang X Y, Yin R S, et al. Scripta Materialia,2015,108,109.
22 Zhu Y T, Zhang X Y, Ni H T, et al. Materials Science and Engineering A,2012,548,1.
23 Tu J, Zhang X Y, Lou C, et al. Philosophical Magazine Letters,2013,93,292.
24 Tu J, Zhang X Y, Wang J, et al. Applied Physics Letters,2013,301,051903.
25 Zhang X Y, Tu J, Liu Q. Scripta Materialia,2012,67,991.
26 Sun Q, Zhang X Y, Wang Y C, et al. Materials Characterization,2016,116,44.
27 Wu R H. The mathematic models for flow stress and kinetics for proeutectoid ferrite formation of hot-deformed austenite of structural steels. Doctor's Thesis, Shanghai Jiaotong University, China,2002(in Chinese).
吴瑞恒.结构钢热变形行为及其铁素体析出动力学数学模型.博士学位论文,上海交通大学,2002.
28 Li S L, Zhou Y, Wang L M, et al. Journal of Plastic Engineering,2011,18(3),35(in Chinese).
李仕力,周芸,王立民,等.塑性工程学报,2011,18(3),35.
29 Wu X Q. Research on corrosion resistance and hot workability of new cobalt-based alloys. Master's Thesis, Liaoning University of Science and Technology, China,2016(in Chinese).
武学强.新型钴基合金的耐蚀及热加工性能研究.硕士学位论文,辽宁科技大学,2016.
30 Tang C F, Qu X H, Duan B H, et al. Journal of Beijing University of Science and Technology,2006,28(6),000542(in Chinese).
汤春峰,曲选辉,段柏华,等.北京科技大学学报,2006,28(6),000542.
31 Suzuki A, Denolf G C, Pollock T M. Scripta Materialia,2007,56(5),385.
32 Suzuki A, Pollock T M. Acta Materialia,2008,56(6),1288.
33 Wang S F, Li S S, Sha J B. Rare Metal Materials and Engineering,2013,42(5),1003(in Chinese).
王少飞,李树索,沙江波.稀有金属材料与工程,2013,42(5),1003.
34 Guo Y, Zhong F, Yu Y, et al. Journal of Alloys and Compounds,2017,710,725.
35 Gabb T P, Dreshfield R L.Superalloys Ⅱ, Wiley,New York (NY),1987.
36 Pollock T M, Field R D, Nabarro F R N, Duesbery M S, Eds. Dislocations in solids, Elsevier, Amsterdam,2002.
37 Huis in't Veld A J, Boom G, Bronsveld P M, et al. Scripta Metallurgica,1985,19(9),1123.
38 Pope D P, Ezz S S. Metallurgical Reviews,1984,29(1),136.
39 Pollock T M, Dibbern J, Tsunekane M, et al. JOM,2010,62(1),58.
40 Yao C S, Chen Z, Wang Y X, et al.Rare Metal Materials and Enginee-ring,2012,41(11),2064(in Chinese).
姚传生,陈铮,王永欣,等.稀有金属材料与工程,2012,41(11),2064.
41 Kobayashi S, Tsukamoto Y, Takasugi T, et al. Intermetallics,2009,17(12),1085.
42 Chen M, Wang C Y. Scripta Materialia,2009,60(8),6592.
43 Jiang C. Scripta Materialia.2008,59,1075.
44 Shinagawa K, Omori T, Oikawa K, et al. Scripta Materialia,2009,61(6),612.
45 Feng G, Li H, Li S S, et al. Scripta Materialia,2012,67,499.
46 Yamaguchi M, Umakoshi Y.Progress in Materials Science,1990,34(1),1.
47 Zhong F, Li S S, Sha J B. Materials Science & Engineering A,2015,637,175.
48 Zhong F, Yu Y X, Li S S, et al. Materials Science & Engineering A,2017,696,96.
[1] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[2] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[3] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[4] 张海燕,曹 睿,车洪艳,刘国辉,陈剑虹. Stellite12钴基合金热循环冲击前后拉伸断裂机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 156-160.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed