Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6126-6130    https://doi.org/10.11896/cldb.19100170
  金属与金属基复合材料 |
Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为
关海昆1,2, 李全安1,2, 陈晓亚1, 张帅1, 王颂博1
1 河南科技大学材料科学与工程学院,洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心,洛阳 471023
High Temperature Creep Behavior of Mg-11Gd-2Y-1.5Ag-0.5Zr Alloy
GUAN Haikun1,2, LI Quan'an1,2, CHEN Xiaoya1, ZHANG Shuai1, WANG Songbo1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China
下载:  全 文 ( PDF ) ( 4668KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了Mg-11Gd-2Y-1.5Ag-0.5Zr合金在225~275 ℃/110~150 MPa条件下的高温蠕变行为和组织演变。结果表明:合金在225 ℃/110~150 MPa蠕变状态下,蠕变应力指数n=3.4,蠕变机制为位错滑移机制;在250 ℃/110~150 MPa蠕变状态下,蠕变应力指数n=4.7,蠕变机制为位错滑移机制;在275 ℃/110~130 MPa蠕变状态下,蠕变应力指数n=5.8,蠕变机制为位错滑移机制;在275 ℃/130~150 MPa蠕变状态下,蠕变应力指数n=10.5,幂律蠕变定律失效,蠕变机制较为复杂。根据蠕变激活能Q值对蠕变机制的分析结果与蠕变激活能n值分析结论基本一致。合金在同一温度下,晶粒尺寸随着应力的增大而增大;在同一应力下,晶粒尺寸随着温度的升高而减小。在本研究中,110~150 MPa的高应力范围内,合金在250 ℃以下有着良好的抗蠕变性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关海昆
李全安
陈晓亚
张帅
王颂博
关键词:  Mg-11Gd-2Y-1.5Ag-0.5Zr  蠕变行为  应力指数  蠕变激活能    
Abstract: The creep behavior and microstructure evolution of Mg-11Gd-2Y-1.5Ag-0.5Zr alloy at 225—275 ℃/110—150 MPa were studied. The results show that the creep stress exponent n is 3.4 at 225 ℃/110—150 MPa, and the creep mechanism is dislocation slip mechanism. At 250 ℃/110—150 MPa, the creep stress exponent n is 4.7, and the creep mechanism is dislocation slip mechanism. At 275 ℃/110—130 MPa, the creep stress exponent n is 5.8, and the creep mechanism is dislocation slip mechanism. At 275 ℃/130—150 MPa, the creep stress exponent n is 10.5, the creep law of power law is invalid and the creep mechanism is complex. The results of creep activation energy Q on creep mechanism are basically consistent with the result of creep stress exponent n value. At the same temperature, the grain size increases with the increase of stress. Under the same stress, the grain size decreases with the increase of temperature. Under the high stress range of 110 MPa to 150 MPa, the alloy has good creep resistance under 250 ℃.
Key words:  Mg-11Gd-2Y-1.5Ag-0.5Zr    creep behavior    stress exponent    creep activation energy
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TG166.4  
基金资助: 国家自然科学基金(51571084;51171059)
通讯作者:  q-ali@163.com   
作者简介:  关海昆,河南科技大学,硕士研究生,主要从事稀土镁合金研究工作,获国家发明专利授权7项。
李全安,河南科技大学,教授,主要从事稀土镁合金、稀土功能材料、稀土表面改性等研究。主持国家自然科学基金、河南省杰出人才基金、河南省杰出青年基金等项目10余项,发表研究论文300余篇,获国家发明专利授权20余项。
引用本文:    
关海昆, 李全安, 陈晓亚, 张帅, 王颂博. Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为[J]. 材料导报, 2021, 35(6): 6126-6130.
GUAN Haikun, LI Quan'an, CHEN Xiaoya, ZHANG Shuai, WANG Songbo. High Temperature Creep Behavior of Mg-11Gd-2Y-1.5Ag-0.5Zr Alloy. Materials Reports, 2021, 35(6): 6126-6130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100170  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6126
1 Shao J. World Nonferrous Metals,2018(19),161.
邵俊.世界有色金属,2018(19),161.
2 Tang C P, Zuo G L, Li Z Y, et al. Materials Review A: Review Papers,2018,32(11),3760.
唐昌平,左国良,李志云,等.材料导报:综述篇,2018,32(11),3760.
3 Alizadeh R, Mahmudi R, Ngan A H W, et al. Journal of Materials Science,2015,14(14),4940.
4 Dong T Y. World Nonferrous Metals,2018(19),156(in Chinese).
董天宇.世界有色金属,2018(19),156.
5 Jafari N H R, Wu G H, Liu W C. Materials Science and Engineering A,2016,651,840.
6 Sun B W. Petrochemical Industry Technology,2017,24(12),211(in Chinese).
孙博闻.石化技术,2017,24(12),211.
7 Li R G, Zhang J H, Fu G Y, et al. Materials Science and Engineering, A,2018,715,186.
8 Zhou L P, Zeng X Q, Li D J, et al. Transactions of Nonferrous Metals Society of China,2015,25(6),1409.
9 Yuan L, Shi W C, Zhong Y Q, et al. Materials Science and Engineering, A,2015,639,274.
10 Zhang Q, Li Q A, Zhang X Y, et al. Foundry,2011,60(11),1080(in Chinese).
张清,李全安,张兴渊,等.铸造,2011,60(11),1080.
11 Chen X Y, Zhang Y, Peng L M, et al. Calphad Computer Coupling of Phase Diagrams and Thermochemistry,2015,48,43.
12 Birbilis N, Rong W, Zhang Y, et al. Materials Science and Engineering A,2018,731,609.
13 Zhao Z, Wang Q D, Ding W J. Special Casting and Nonferrous Alloys,2009,29(5),477(in Chinese).
赵政,王渠东,丁文江.特种铸造及有色合金,2009,29(5),477.
14 Chen J, Wang Q D, Zhao Z, et al. Chinese High Technology Letters,2010,20(4),427(in Chinese).
陈杰,王渠东,赵政,等.高技术通讯,2010,20(4),427.
15 Zhang Y, Wu Y J, Peng LM. Journal of Alloys and Compounds,2014,615,703.
16 Guan H K, Li Q A, Chen X Y, et al. Transactions of Materials and Heat Treatment,2019,40(10),23(in Chinese).
关海昆,李全安,陈晓亚,等.材料热处理学报,2019,40(10),23.
17 Zhang L T, Zhang X B, Cui X P. Materials Review A: Review Papers,2014,28(10),91(in Chinese).
张李铁,张效宾,崔晓鹏.材料导报:综述篇,2014,28(10),91.
18 Li D S, Cheng X N. Materials Review A: Review Papers,2006,20(5),424(in Chinese).
李冬升,程晓农.材料导报:综述篇,2006,20(5),424.
19 Serebryany V N, Rokhlin L L, Monina A N. Inorganic Materials: Applied Research,2014,5(2),116.
20 Lussana D, Massazza M, Riontino G. Journal of Thermal Analysis and Calorimetry,2008,92(1),223.
[1] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed