Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 1998-2002    https://doi.org/10.11896/j.issn.1005-023X.2018.12.011
  材料研究 |
7085铝合金的淬火敏感性
肖靖1,2,易幼平1,2,崔金栋1,2,黄始全1,2
1 中南大学高性能复杂制造国家重点实验室,长沙 410083;
2 中南大学机电工程学院,长沙 410083
The Quench Sensitivity of 7085 Aluminum Alloy
XIAO Jing1,2,YI Youping1,2,CUI Jindong1,2,HUANG Shiquan1,2
1 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083;
2 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 3049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分级淬火法测定了7085铝合金的TTT和TTP曲线,并结合透射电镜对其淬火敏感性进行了研究。结果表明,在等温保温过程中7085铝合金淬火态电导率升高,时效态硬度下降,在中间温度段电导率及硬度变化较快;TTT和TTP曲线的鼻尖温度约为320 ℃,淬火敏感区间为250~370 ℃;等温保温过程中,过饱和固溶体分解析出平衡相η,在320 ℃附近析出速率达到最大,随着等温保温时间的延长,η相聚集并长大,时效后出现大量无沉淀析出区域,导致性能显著下降;在淬火敏感区间,较高的相变驱动力和较大的扩散速率是η相快速析出长大的主要原因。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖靖
易幼平
崔金栋
黄始全
关键词:  7085铝合金  淬火敏感性  TTT曲线  TTP曲线    
Abstract: The time-temperature-transformation (TTT) curve and time-temperature-property (TTP) curve of 7085 aluminum alloy were determined by an interrupted quench technique. The microstructure transformation during isothermal treatment was stu-died by the transmission electron microscopy (TEM). Our experiment confirmed an electro-conductivity increasing trend and a hardness decreasing trend of the 7085 alloy during isothermal treatment, both of which change faster in the moderate temperature range. The nose temperatures of the TTT and TTP curves are about 320 ℃ and the high quench sensitive temperature ranges from 250 ℃ to 370 ℃. Microstructure observation indicated that the supersaturated solid solution decomposes and equilibrium η precipitates, and the precipitation rate reaches the highest value at about 320 ℃. η particles precipitate, agglomerate and grow as the isothermal treatment processes, which results in loss of solutes and decrease of the property. In the quench sensitive range, η particles’ rapid preci-pitation and growth can be attributed to high diffusion rate of solute atoms and large driving force of phase transformation.
Key words:  7085 aluminum alloy    quench sensitivity    TTT curve    TTP curve
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TG146.2  
基金资助: 江苏省科技计划(BA2015075);国家国际科技合作专项(2014DFA51250)
作者简介:  肖靖:男,1993年生,硕士研究生,主要从事轻合金热处理工艺研究 E-mail:2547069823@qq.com 易幼平:通信作者,男,教授,主要从事轻合金材料成形工艺装备与研究 E-mail:yyp@csu.edu.cn
引用本文:    
肖靖,易幼平,崔金栋,黄始全. 7085铝合金的淬火敏感性[J]. 《材料导报》期刊社, 2018, 32(12): 1998-2002.
XIAO Jing,YI Youping,CUI Jindong,HUANG Shiquan. The Quench Sensitivity of 7085 Aluminum Alloy. Materials Reports, 2018, 32(12): 1998-2002.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.011  或          http://www.mater-rep.com/CN/Y2018/V32/I12/1998
1 Liu Bing, Peng Chaoqun, Wang Richu, et al. Recent development and prospects for giant plane aluminum alloys[J]. Chinese Joumal of Nonferrous Metals,2010,20(9):1705(in Chinese).
刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705.
2 James T S, John L, Jr Warren H H. Aluminum alloys for aero-structures[J]. Advanced Materials and Process,1997,152(4):17.
3 John L. Advanced aluminum and hybrid aerostructures for future aircraft[J]. Materials Science Forum,2006,519-521:1233.
4 Chakrabarti D J, Liu J, Sawtell R R, et al. New generation high strength high damage tolerance 7085 thick alloy product with low quench sensitivity[C]//Proceedings of ICAA 9. Melboume: Institute of Materials Engineering Australasia Ltd,2004:969.
5 Liu Zongchang. Quenching cracking and its prevention[J]. Heat Treatment,2010,25(3):72(in Chinese).
刘宗昌.淬火开裂及防止方法[J].热处理,2010,25(3):72.
6 Dai Wei. The reduction of quenching residual stress for 7A85 aluminum alloy joint die forging by mold compression[D]. Changsha: Central South University,2013(in Chinese).
代伟.模压法消减7A85铝合金接头模锻件淬火残余应力研究[D].长沙:中南大学,2013.
7 Fink W L, Wiley L A. Quenching of 75S aluminum alloy[J]. Ame-rican Institute of Mining and Metallurgical Engineers,1948,175:414.
8 Li Shenlan, Huang Zhiqi. Quenching sensitivity of 6351 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23:46.
9 Xiong Baiqing, Li Xiwu, Zhang Yongan, et al. Quench sensitivity of Al-Zn-Mg-Cu alloys[J]. Chinese Journal of Nonferrous Metals,2011,21(10):2631(in Chinese).
熊柏青,李锡武,张永安,等.Al-Zn-Mg-Cu合金的淬火敏感性[J].中国有色金属学报,2011,21(10):2631.
10 Zhang Zhihui. The study of quenching sensitivity of 7000 series aluminum alloys[D]. Beijing:General Research Institute for Nonferrous Metals,2014(in Chinese).
张智慧.7000系铝合金的淬火敏感性研究[D].北京:北京有色金属研究总院,2014.
11 Zhang Xinming, Liu Wenjun, Liu Shengdan, et al. Effect of rolling reduction on quench sensitivity of 7050 aluminum alloy[J]. Transactions of Materials and Heat Treatment,2010,31(6):33(in Chinese).
张新明,刘文军,刘胜胆,等.热轧变形量对7050铝合金淬火敏感性的影响[J].材料热处理学报,2010,31(6):33.
12 Zhang Xinming, Liu Shengdan, You Jianghai, et al. Influence of aging on quenching sensitivity effect of 7055 aluminum alloy[J].Chinese Journal of Nonferrous Metals,2007,17(2):260(in Chinese).
张新明,刘胜胆,游江海,等.时效对7055铝合金淬火敏感效应的影响[J].中国有色金属学报,2007,17(2):260.
13 Liu Wenjun. The research about the quench induced precipitation and quenching sensitivity of Al-Zn-Mg-Cu alloys[D]. Changsha:Central South University,2011(in Chinese).
刘文军.Al-Zn-Mg-Cu铝合金淬火析出行为及淬火敏感性研究[D].长沙:中南大学,2011.
14 Staley J T. Quench factor analysis of aluminum alloys[J]. Material Science and Technology,1987,3(11):923.
15 Conserv A M, Di Russo E, Caloni O. Comparison of the influence of chromium and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys[J]. Metallurgical and Materials Transactions B,1971,2(4):1227.
16 Dumont M, Lefebvre W, Doisneau-Cottignies B. Characterisation of the composition and volume fraction of η′ and η precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy[J]. Acta Materialia,2005,53(10):2881.
17 Burke J. The kinetics of phase transformation in metal[M]. London: Pergamon Press,1965.
18 Nagahama K, Miki I. Precipitation during recrystallization in Al-Mn and Al-Cr alloys[J]. Journal of Japan Institute of Light Metals,1974,15(3):185.
19 肖纪美.合金相与相变[M].北京:冶金工艺出版社,2004:310.
[1] 江道, 易幼平, 黄始全. LD7铝合金淬火敏感性及相变动力学规律*[J]. 《材料导报》期刊社, 2017, 31(12): 140-144.
[2] 董非,易幼平,黄始全,张玉勋,. 2A14铝合金TTT曲线及其淬火敏感性*[J]. 材料导报编辑部, 2017, 31(10): 77-81.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed