Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21012-21025    https://doi.org/10.11896/cldb.19080216
  材料与可持续发展(三)--环境友好材料与环境修复材料* |
天然高分子基刺激响应性智能水凝胶研究进展
范治平1,*, 程萍2, 张德蒙3, 王文丽3, 韩军1,*
1 聊城大学生物制药研究院,聊城 252059;
2 聊城高新生物技术有限公司,聊城 252059;
3 青岛明月海藻集团有限公司,海藻活性物质国家重点实验室,青岛 266400
Progress on Stimulus Responsive Smart Hydrogels Based on Natural Polymers
FAN Zhiping1,*, CHENG Ping2, ZHANG Demeng3, WANG Wenli3, HAN Jun1,
1 Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
2 Liaocheng High-Tech Biotechnology Co.,Ltd., Liaocheng 252059, China
3 State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao 266400, China
下载:  全 文 ( PDF ) ( 10434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然高分子基水凝胶具有优异的生物相容性、可降解性及生物学特性,因此在生物医药领域得到深入研究,而柔性器件、仿生材料等尖端产业的迅猛发展则进一步拓展了它的应用领域。刺激响应性水凝胶是指在周围环境刺激下凝胶网络发生形变、相变,进而产生溶胀-收缩或凝胶-溶胶转变的一类智能高分子材料。具有特异响应性的官能团、材料与天然高分子的结合,通常是赋予凝胶刺激响应性的主要方法。
传统水凝胶材料虽已有产品面世,但部分产品仍存在以下问题:(1)含有大量合成高分子材料,且高分子材料合成工艺复杂、能耗大、成本高;(2)凝胶生物相容性和可降解性不理想,不适用于体内植入物等高端医用领域;(3)凝胶成型后性能单一且不可变,无法做到“智能”响应外界刺激,使用领域严重受限。
与传统水凝胶相比,刺激响应性水凝胶因拥有空间、时间上的敏感性而引起人们的广泛关注。相关产品具有多重、可变、可控的性能,大大拓宽了其应用领域。近年来,天然高分子材料的蓬勃发展,则为刺激响应性水凝胶增添了新的机遇。目前,国内外学者对天然高分子基刺激响应性水凝胶的研究主要集中于:(1)开发具有优异基础性能并兼具良好生物相容性、生物可降解性的高端生物医用材料;(2)注重天然高分子结构改性,赋予材料多重刺激响应特性,制备具有多功能、可多领域应用的水凝胶;(3)新的非接触型刺激源的开发与利用;(4)已知具有确切疗效产品的临床转化。
本文根据不同刺激源(物理刺激、化学刺激及生物化学刺激)重点介绍了以天然高分子为基底材料,具有温度响应、光响应、压力响应、电响应、磁响应、pH响应、氧化还原响应、离子响应、糖响应及酶响应水凝胶的设计方法、行为机理及其最新应用研究进展,并对该类水凝胶未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范治平
程萍
张德蒙
王文丽
韩军
关键词:  天然高分子  水凝胶  刺激响应性  刺激敏感性  生物材料  智能凝胶    
Abstract: atural polymer based hydrogels have been extensively studied in the field of biomedicine due to their excellent biocompatibility, biodegra-dability and biological characteristics. The rapid development of advanced industries, such as flexible devices and biomimetic materials, has further expanded their application fields. Stimulus responsive hydrogel is a kind of intelligent materials, whose network structure can undergo deformation and phase transformation in response to external environmental triggers, resulting in a swelling-shrinking or gel-sol transition behavior. The combination of specific responsive functional groups and materials with natural polymers is usually the main method to give hydrogel stimuli responsiveness.
Although traditional hydrogel materials are available, some products still have the following problems: ⅰ. It contains a large number of synthetic polymers, and the synthesis process is complex, high energy consumption and cost; ⅱ.The biocompatibility and degradability of hydrogels are not good, which are not suitable for a series of high-end medical fields, such as implants. ⅲ. After hydrogel forming, the performance is single and immutable, unable to achieve “intelligent” response to external stimuli, and the field of application is severely limited.
Compared with traditional hydrogels, stimulus responsive hydrogels have attracted much attention due to their spatial, temporal sensitivity. Re-levant products with multiple, variable and controllable performances have greatly broadened their application fields. In recent years, the vigorous development of natural polymers has provided new opportunities for stimulus responsive hydrogels. At present, the research on natural polymer based stimulus responsive hydrogels mainly focuses on the following aspects: ⅰ. Development of high-end biomedical hydrogels with excellent basic properties and good biocompatibility, biodegradability. ⅱ. Focusing on natural polymer structural modification, giving multiple stimuli responsive properties of materials and preparing multifunctional, multifunctional hydrogels. ⅲ. Development and application of novel non-contact stimulator. ⅳ.Clinical transformation of products with definite efficacy.
This review mainly focuses on the design methods, behavior mechanisms and recent application progress of natural polymer based hydrogels with temperature, light, pressure, electrical, magnetic, pH, redox, ionic, sugar and enzymatic responses. Finally, a perspective on the future research directions of natural polymer based hydrogels is briefly discussed.
Key words:  natural polymers    hydrogel    stimulus responsive    stimulus sensitive    biomaterial    smart hydrogels
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  O636  
基金资助: 国家科技重大专项项目(2017ZX09201003-013);山东省自然科学基金(ZR2016EL04);山东省抗体制药协同创新中心开放课题(CIC-AD1833);海藻活性物质国家重点实验室开放基金(SKL-BASS1712);聊城大学博士基金(318051609);山东省泰山学者研究基金(319190201)
作者简介:  范治平,聊城大学生物制药研究院讲师,聊城大学生物制药“泰山学者”团队核心成员、秘书。2011年毕业于齐鲁工业大学(山东省科学院)高分子物理与化学专业,获理学硕士学位,2015年毕业于东南大学材料科学与工程(生物材料与组织工程)专业,获工学博士学位。2018年入选聊城高新区第二批“3111”人才高端人才。主要从事药物制剂及药用、医用生物高分子缓控释材料的制备及性能研究。近年来,主持山东省自然科学基金1项,国家重点实验室开放基金1项,山东省抗体制药协同创新中心开放课题1项,参与国家“重大新药创制”科技重大专项1项,国家自然科学基金课题2项,省部级课题多项,在 New J Chem、RSC Advances、J Biomater Sci Polym Ed、Appl Surf Sci 等国际期刊发表SCI文章10余篇,EI及中文核心6篇,中国专利6项。
程萍, 2008年毕业于齐鲁工业大学(山东省科学院)化学工程与工艺专业。先后在国内多家知名企业(鲁南制药、正大清江、聊城高新等)从事药物分析及研发工作,主要研究方向为药物分析方法的开发和优化,药物质量控制等。2018年入选聊城高新区第二批“3111”人才优选人才。近年来,参与包括山东省自然科学基金等课题多项。参与原料药研发及仿制药质量一致性评价项目多项,涉及多种药物剂型,如片剂、注射剂、胶囊剂、喷雾剂等。在中外期刊发表科技论文多篇,申请中国专利3项。
韩军,国家特聘专家、山东师范大学及济南大学博士研究生导师,山东省“泰山学者”特聘教授(二级),第二军医大学药学学士,美国明尼苏达大学药剂学博士,现任聊城大学生物制药研究院院长,国家药品监督管理局仿制药研究与评价重点实验室(济南)学术委员、海藻活性物质国家重点实验室(青岛)学术委员,曾任抗体药物与靶向治疗国家重点实验室(上海)首席科学家等。韩教授在聊城大学领导建设山东省抗体制药协同创新中心及山东省纳米药物与释药系统工程技术研究中心,并任中心主任。目前,主持和参与包括国家“重大新药创制”科技重大专项等多项国家和省部级项目,与几十家国际国内企业和研究机构有项目合作及学术交流。曾就职于Sanofi, Pfizer, Abbott, Novartis, Teva等国际制药企业。
引用本文:    
范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
FAN Zhiping, CHENG Ping, ZHANG Demeng, WANG Wenli, HAN Jun1,. Progress on Stimulus Responsive Smart Hydrogels Based on Natural Polymers. Materials Reports, 2020, 34(21): 21012-21025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080216  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21012
[1] Wichterle O, Lim D. Nature, 1960, 185, 117.
[2] Xin S, Chimene D, Garza J E, et al. Biomaterials Science, 2019, 7, 1179.
[3] Zhan H, Lwik D W P M. Advanced Functional Materials, 2019, 29, 1808505.
[4] Leone G, Consumi M, Lamponi S, et al. Materials Science and Enginee-ring: C, 2019, 98, 696.
[5] Li Y, Zhu C, Fan D, et al. Macromolecular Bioscience, 2019, 19, 1800424.
[6] Das S, Subuddhi U. Journal of Pharmaceutical Analysis, 2019, 9, 108.
[7] Valentin T M, DuBois E M, Machnicki C E, et al. Polymer Chemistry, 2019, 10, 2015.
[8] James J, Thomas G V, Thomas S. Materials Today: Proceedings, 2019, 9, 77.
[9] Gholizadeh H, Cheng S, Pozzoli M, et al. Expert Opinion on Drug Deli-very, 2019, 16, 453.
[10] Wu B Y, Le X X, Jian Y K, et al. Macromolecular Rapid Communications, 2019, 40, 1800648.
[11] Lei J, Li X, Wang S, et al. ACS Applied Polymer Materials, 2019, 1, 1350.
[12] Laha B, Goswami R, Maiti S, et al. Carbohydrate Polymers, 2019, 210, 274.
[13] Wen C, Lu L, Li X. Macromolecular Materials and Engineering, 2014, 299, 504.
[14] Fan Z, Cheng P, Liu M, et al. New Journal of Chemistry, 2017, 41, 8656.
[15] Fan Z, Zhang Y, Ji J, et al. RSC Advances, 2015, 5, 16740.
[16] Fan Z, Zhang Y, Zhang W, et al. Journal of Applied Polymer Science, 2015, 132, 42301.
[17] Zhang Y, Fan Z, Xu C, et al. European Polymer Journal, 2015, 72, 717.
[18] Fan Z, Zhang Y, Fang S, et al. RSC Advances, 2015, 5, 1929.
[19] Narayanaswamy R, Torchilin V P. Molecules, 2019, 24, 603.
[20] Hoque J, Sangaj N, Varghese S. Macromolecular Bioscience, 2019, 19, 1800259.
[21] Badeau B A, DeForest C A. Annual Review of Biomedical Engineering, 2019, 21, 241.
[22] Kim D, Jo A, Imani K B C, et al. Langmuir, 2018, 34, 4351.
[23] Matsumoto K, Sakikawa N, Miyata T. Nature Communications, 2018, 9, 2315.
[24] Abandansari H S, Ghanian M H, Varzideh F, et al. Biomaterials, 2018, 170, 12.
[25] Wu S W, Liu X, Miller A L, et al. Carbohydrate Polymers, 2018, 192, 308.
[26] Contessi N, Altomare L, Filipponi A, et al. Materials Letters, 2017, 207, 157.
[27] Zou G, Shen J, Duan P, et al. International Journal of Polymer Science, 2018, 2018, 1.
[28] Osman A, Oner E T, Eroglu M S. Carbohydrate Polymers, 2017, 165, 61.
[29] Zhang K, Shi Y, Wu L, et al. Carbohydrate Polymers, 2018, 196, 209.
[30] Li Y F, Nancy K, Albert G, et al. Angewandte Chemie, 2017, 129, 6179.
[31] Zubik K, Singhsa P, Wang Y, et al. Polymers, 2017, 9, 119.
[32] Wei W, Li J, Qi X, et al. Carbohydrate Polymers, 2017, 177, 275.
[33] Ossipov D A, Romero A B, Ossipova E. Carbohydrate Polymers, 2018, 180, 145.
[34] Pang Q, Zheng X, Luo Y, et al. Journal of Materials Chemistry B, 2017, 5, 8975.
[35] Wang L, Li B, Xu F, et al. Carbohydrate Polymers, 2017, 174, 904.
[36] Su X, Xiao C, Hu C.International Journal of Biological Macromolecules, 2018, 115, 1189.
[37] Giammanco G E, Sosnofsky C T, Ostrowski A D. ACS Applied Materials & Interfaces, 2015, 7, 3068.
[38] Tam R Y, Smith L J, Shoichet M S. Accounts of Chemical Research, 2017, 50, 703.
[39] Deng Z, Guo Y, Zhao X, et al. Chemistry of Materials, 2018, 30, 1729.
[40] Lei Z Y, Wang Q K, Sun S T,et al. Advanced Materials, 2017, 29, 1700321.
[41] Thompson B R, Rutkevi cˇius M, Horozov T S, et al. Materials Chemistry Frontiers, 2018, 2, 402.
[42] Si Y, Wang L, Wang X, et al. Advanced Materials, 2017, 29, 1700339.
[43] Hosseinifar T, Sheybani S, Abdouss M, et al. Journal of Biomedical Materials Research Part A, 2018, 106, 349.
[44] Gao L X, Dai W Q, Chen J L, et al. Soft Materials, 2017, 15, 163.
[45] Qu J, Zhao X, Ma P X, et al. Acta Biomaterialia, 2018, 72, 55.
[46] di Luca M, Vittorio O, Cirillo G, et al. International Journal of Pharmaceutics, 2018, 546, 50.
[47] Peng L, Liu Y, Huang J, et al. European Polymer Journal, 2018, 103, 335.
[48] Liu Q, Dong Z, Ding Z, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 7052.
[49] Hu X, Wang Y, Zhang L, et al. International Journal of Biological Macromolecules, 2018, 108, 558.
[50] Xie W, Gao Q, Guo Z, et al. ACS Applied Materials & Interfaces, 2017, 9, 33660.
[51] Kondaveeti S, Semeano A T S, Cornejo D R, et al. Colloids and Surfaces B: Biointerfaces, 2018, 167, 415.
[52] Poorgholy N, Massoumi B, Jaymand M. International Journal of Biological Macromolecules, 2017, 97, 654.
[53] Zhao W, Odelius K, Edlund U, et al. Biomacromolecules, 2015, 16, 2522.
[54] Mahdavinia G R, Soleymani M, Etemadi H, et al. International Journal of Biological Macromolecules, 2018, 107, 719.
[55] Mahdavinia G R, Mosallanezhad A, Soleymani M, et al.International Journal of Biological Macromolecules, 2017, 97, 209.
[56] Rao K M, Kumar A, Han S S. Journal of Materials Science & Technology, 2018, 34, 1371.
[57] Yang X F, Liu G Q, Peng L,et al.Advanced Functional Materials, 2017, 27, 1703174.
[58] Qi X, Wei W, Li J, et al. Molecular Pharmaceutics, 2017, 14, 431.
[59] Xu W, He X, Zhong M, et al. RSC Advances, 2015, 5, 3157.
[60] Lima D S, Tenório-Neto E T, Lima-Tenório M K, et al. Journal of Mole-cular Liquids, 2018, 262, 29.
[61] Qu J, Zhao X, Ma PX, et al. Acta biomaterialia, 2017, 58, 168.
[62] Shabir F, Erum A, Tulain UR, et al. Des Monomers Polym, 2017, 20, 485.
[63] Chen Y, Song G, Yu J, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 61.
[64] Wang Y, Wang J, Yuan Z, et al.Colloids and Surfaces B: Biointerfaces, 2017, 152, 252.
[65] Hu J, Quan Y, Lai Y, et al. Journal of Controlled Release, 2017, 247, 145.
[66] Duan J, Liang X, Zhu K, et al. Soft Matter, 2017, 13, 345.
[67] Veres P, Seb k D, Dékány I, et al. Carbohydrate Polymers, 2018, 188, 159.
[68] Liu P, Mai C, Zhang K. ACS Sustainable Chemistry & Engineering, 2017, 5, 5313.
[69] Liu H, Rong L, Wang B, et al. Carbohydrate Polymers, 2017, 176, 299.
[70] Hu X, Wang Y, Zhang L, et al. Carbohydrate Polymers, 2017, 155, 242.
[71] Zheng Y N, Sun J, Jin X, et al. Indian Journal of Pharmaceutical Sciences, 2018, 80, 298.
[72] Qi X, Wei W, Su T, et al. Carbohydrate Polymers, 2018, 195, 368.
[73] Qi X, Wu L, Su T, et al. Colloids and Surfaces B: Biointerfaces, 2018, 170, 364.
[74] Ashraf M U, Hussain M A, Muhammad G, et al. International Journal of Biological Macromolecules, 2017, 95, 138.
[75] Ghorbanali S, Hossein H. Advanced Healthcare Materials, 2017, 6, 1700801.
[76] Gu Z, Dang T T, Ma M, et al. ACS Nano, 2013, 7, 6758.
[77] Kim M Y, Kim J. ACS Biomaterials Science & Engineering, 2017, 3, 572.
[78] Zhao L, Niu L,Liang H, et al. ACS Applied Materials & Interfaces, 2017, 9, 37563.
[79] Dong Y, Wang W, Veiseh O, et al. Langmuir, 2016, 32, 8743.
[80] Hong S H, Kim S, Park J P, et al. Biomacromolecules, 2018, 19, 2053.
[81] Yang J, Cao Z. Journal of Controlled Release, 2017, 263, 231.
[82] Bai M, He J, Kang L, et al. International Journal of Biological Macromolecules, 2018, 113, 889.
[83] Morey M,Pandit A. Advanced Drug Delivery Reviews, 2018, 129, 169.
[84] Purcell B P, Barlow S C, Perreault P E, et al. American Journal of Phy-siology-Heart and Circulatory Physiology, 2018, 315, H814.
[85] Sun T, Zhu C, Xu J. Soft Matter, 2018, 14, 921.
[86] Wang X, Che S S, Wu D B, et al. Advanced Materials, 2018, 30, 1705668.
[87] Mu J, Lin J, Huang P, et al. Chemical Society Reviews, 2018, 47, 5554.
[1] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[2] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[3] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[4] 史燕娟, 冯梦梦, 陈光楠, 肖欢, 石贵滨, 曹承然, 何松. SiO2凝胶干水粉体性能研究[J]. 材料导报, 2020, 34(16): 16025-16030.
[5] 李学锋, 王慧, 龙世军, 黄以万, 李海燕. 离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究[J]. 材料导报, 2020, 34(16): 16149-16154.
[6] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[7] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[8] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[9] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[10] 李进, 赵梓年, 李征征, 薛松, 郑泽邻. 自愈合水凝胶的合成机理及生物医学应用[J]. 材料导报, 2019, 33(19): 3328-3335.
[11] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[12] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[13] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[14] 王勇, 李旭, 乔丽英, 陈毅. 纯镁表面NaMgF3膜层的制备及其耐腐蚀性能[J]. 材料导报, 2018, 32(22): 3925-3930.
[15] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed