Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1187-1191    https://doi.org/10.11896/j.issn.1005-023X.2018.07.021
  生物医用材料 |
超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为
吴称意1,2, 李聪1, 张旭1, 程超1, 吴少尉1, 周倩1, 覃姗姗1
1 湖北民族学院化学与环境工程学院,恩施 445000;
2 湖北省生物资源保护与利用重点实验室,恩施 445000
Ultrasound-assisted Synthesis of pH-sensitive Macroporous Sodium Alginate-based Hydrogels and Sustained Release
WU Chengyi1,2, LI Cong1, ZHANG Xu1, CHENG Chao1, WU Shaowei1, ZHOU Qian1, QIN Shanshan1
1 Department of Chemistry and Environmental Engineering, Hubei University of Nationalities, Enshi 445000;
2 Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Enshi 445000
下载:  全 文 ( PDF ) ( 1395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用超声波辅助接枝聚合制备多孔NaAlg-g-P(NVP-co-NHMAA)水凝胶,利用傅里叶红外光谱(FT-IR)、热重分析(TGA)和扫描电镜(SEM)对NaAlg-g-P(NVP-co-NHMAA)的结构和形态进行了表征,同时还研究了NaAlg-g-P(NVP-co-NHMAA)的溶胀行为和pH敏感性。以5-氟尿嘧啶(5-FU)作为模型药物,研究了NaAlg-g-P(NVP-co-NHMAA)水凝胶在模拟胃液(SGF,pH=1.2)和模拟肠液(SIF,pH=7.4)下的控制释放行为,结果显示, 在pH=7.4时,11 h内该水凝胶的累积释放率高达80.2%,而在pH=1.2时只有50.2%,这表明NaAlg-g-P(NVP-co-NHMAA)水凝胶可以作为结肠靶向药物输送载体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴称意
李聪
张旭
程超
吴少尉
周倩
覃姗姗
关键词:  水凝胶  膨胀  持续释放  5-氟尿嘧啶  pH敏感性  海藻酸钠    
Abstract: A novel macroporous NaAlg-g-poly(NVP-co-NHMAA) was synthesized by a free radical grafting polymerization with ultrasound radiation, the structure and morphologies of NaAlg-g-poly(NVP-co-NHMAA) were characterized by Fourier transform infrared spectroscope (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The swelling behavior and pH sensitivity of NaAlg-g-poly(NVP-co-NHMAA) were investigated. 5-Fluorouracil (5-FU) was used as model drug to study the release behavior in simulated gastric fluids (SGF, pH=1.2) and simulated intestinal fluids (SIF, pH=7.4). The results displayed that the cumulative release ratio was up to 80.2% in pH=7.4 for 11 h, only 50.2% in pH=1.2. It means that this hydrogel was suitable for colon-specific drug delivery systems.
Key words:  hydrogel    swelling    sustained release    5-fluorouracil    pH-sensitivity    sodium alginate
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  O63  
基金资助: 湖北省教育厅科学研究计划资助项目(Q20171905)
作者简介:  吴称意:男,1982年生,博士,副教授,主要从事环境友好相关高分子材料研究 E-mail:wcygfz@126.com
引用本文:    
吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
WU Chengyi, LI Cong, ZHANG Xu, CHENG Chao, WU Shaowei, ZHOU Qian, QIN Shanshan. Ultrasound-assisted Synthesis of pH-sensitive Macroporous Sodium Alginate-based Hydrogels and Sustained Release. Materials Reports, 2018, 32(7): 1187-1191.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.021  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1187
1 Wei Q B, Fu F, Zhang Y Q, et al. Synthesis and characterization of pH-responsive carboxymethyl chitosan-g-polyacrylic acid hydrogels[J].Journal of Polymer Research,2015,22:15.
2 Garcia O, Blanco M D, Martin J A, et al. 5-Fluorouracil trapping in poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels: In vitro drug delivery studies[J].European Polymer Journal,2000,36:111.
3 Muzzalupo R, Nicoletta F P, Trombino S, et al. A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation[J].Colloids and Surfaces B:Biointerfaces,2007,58:197.
4 Singh B, Chauhan N. Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems[J].Acta Biomaterialia,2008,4:1244.
5 Hussain M, Beale G, Hughes M, et al. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly(lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer[J].International Journal of Pharmaceutics,2002,234:129.
6 Chang C Y, He M, Zhou J P, et al. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels[J].Macromolecules,2011,44:1642.
7 Artyukhov A A, Shtilman M I, Kuskov A N, et al. Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers[J].Journal of Polymer Research,2011,18:667.
8 Aouada F A, Moura M R D, Orts W J, et al. Preparation and cha-racterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils[J].Journal of Agricultural and Food Chemistry,2011,59:9433.
9 Wang J C, Ying X G, Liu J Q, et al. Controlled mechanical and swelling properties of urethane acrylate grafted calcium alginate hydrogels[J].International Journal of Biological Macromolecules,2015,81:11.
10Wanga L, Shelton R M, Cooper P R, et al.Evaluation of sodium al-ginate for bone marrow cell tissue engineering[J].Biomaterials,2003,24:3475.
11Venkatesan J, Bhatnagar I, Manivasagan P, et al.Alginate compo-sites for bone tissue engineering:A review[J].International Journal of Biological Macromolecules,2015,72:269.
12Jain M, Garg V K, Kadirvelu K.Cadmium(Ⅱ) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads[J].Bioresource Technology,2013,129:242.
13 Polyak B, Geresh S, Marks R S.Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction[J].Biomacromolecules,2004,5:389.
14 Abd El-Ghaffar M A, Hashem, Rabie A M, et al.pH-sensitive so-dium alginate hydrogels for riboflavin controlled release[J].Carbohydrate Polymers,2012,89:667.
15 Hua S, Ma H, Yang H, et al. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium[J].International Journal of Biological Macromolecules,2010,46:517.
16 He B, Gerpen J H V. Application of ultrasonication in transesterification processes for biodiesel production[J].Biofuels,2012,3:479.
17 Chandralekha E, Thangamani A, Valliappan R. Ultrasound-promoted regioselective and stereoselective synthesis of novel spiroindane-dionepyrrolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides[J].Research on Chemical Intermediates,2013,39:961.
18 Anbarasan R, Jayaseharan J, Sudha M, et al. Sonochemical polymerization of acrylic acid and acrylamide in the presence of a new redox system—A comparative study[J].Journal of Applied Polymer Science,2003,89:3685.
19 Lionetto F, Sannino A, Maffezzoli A. Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels[J].Polymer,2005,46:1796.
20Liu A B, Cai H, Ye B, et al. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer[J].Parasitology Research,2013,112:1865.
21Zhang J, Ye B, Kong J, et al. In vitro protoscolicidal effects of high-intensity focused ultrasound enhanced by a superabsorbent polymer[J].Parasitology Research,2013,112:385.
22Jolhe P D, Bhanvase B A, Patil V S, et al. Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor[J].Chemical Engineer Journal,2015,276:91.
23 Samanta H S, Ray S K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide[J].Carbohydrate Polymers,2014,99:666.
24 Kulkarni R V, Sreedhar V, Mutalik S, et al. Interpenetrating network hydrogel membranes of sodium alginate andpoly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin[J].International Journal of Biological Macromolecules,2010,47:520.
25 Mandal S, Basu S K, Sa B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride[J].Carbohydrate Polymers,2010,82:867.
26 Li G Y, Guo L, Chang X J, et al. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs[J].International Journal of Biological Macromolecules,2012,50:899.
27 Wang X H, Zhou Z L, Guo X W, et al. Ultrasonic-assisted synthesis of sodium lignasulfonate-grafted poly(acrylic acid-co-poly(vinyl prrolidone)) hydrogel for drug delivery[J].RSC Advance,2016,6:35550.
[1] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[4] 王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
[5] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[6] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[7] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[8] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[9] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[10] 张晓静, 窦竞成, 苗龙强, 陈正阳, 沈炜炜. 海藻酸钠/POSS有机-无机杂化中空微囊的制备与性能[J]. 材料导报, 2019, 33(12): 2084-2088.
[11] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[12] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[13] 孙道胜, 程星星, 刘开伟, 王爱国, 张高展. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状[J]. 材料导报, 2018, 32(23): 4135-4141.
[14] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[15] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed