Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1187-1191    https://doi.org/10.11896/j.issn.1005-023X.2018.07.021
  生物医用材料 |
超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为
吴称意1,2, 李聪1, 张旭1, 程超1, 吴少尉1, 周倩1, 覃姗姗1
1 湖北民族学院化学与环境工程学院,恩施 445000;
2 湖北省生物资源保护与利用重点实验室,恩施 445000
Ultrasound-assisted Synthesis of pH-sensitive Macroporous Sodium Alginate-based Hydrogels and Sustained Release
WU Chengyi1,2, LI Cong1, ZHANG Xu1, CHENG Chao1, WU Shaowei1, ZHOU Qian1, QIN Shanshan1
1 Department of Chemistry and Environmental Engineering, Hubei University of Nationalities, Enshi 445000;
2 Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Enshi 445000
下载:  全 文 ( PDF ) ( 1395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用超声波辅助接枝聚合制备多孔NaAlg-g-P(NVP-co-NHMAA)水凝胶,利用傅里叶红外光谱(FT-IR)、热重分析(TGA)和扫描电镜(SEM)对NaAlg-g-P(NVP-co-NHMAA)的结构和形态进行了表征,同时还研究了NaAlg-g-P(NVP-co-NHMAA)的溶胀行为和pH敏感性。以5-氟尿嘧啶(5-FU)作为模型药物,研究了NaAlg-g-P(NVP-co-NHMAA)水凝胶在模拟胃液(SGF,pH=1.2)和模拟肠液(SIF,pH=7.4)下的控制释放行为,结果显示, 在pH=7.4时,11 h内该水凝胶的累积释放率高达80.2%,而在pH=1.2时只有50.2%,这表明NaAlg-g-P(NVP-co-NHMAA)水凝胶可以作为结肠靶向药物输送载体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴称意
李聪
张旭
程超
吴少尉
周倩
覃姗姗
关键词:  水凝胶  膨胀  持续释放  5-氟尿嘧啶  pH敏感性  海藻酸钠    
Abstract: A novel macroporous NaAlg-g-poly(NVP-co-NHMAA) was synthesized by a free radical grafting polymerization with ultrasound radiation, the structure and morphologies of NaAlg-g-poly(NVP-co-NHMAA) were characterized by Fourier transform infrared spectroscope (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The swelling behavior and pH sensitivity of NaAlg-g-poly(NVP-co-NHMAA) were investigated. 5-Fluorouracil (5-FU) was used as model drug to study the release behavior in simulated gastric fluids (SGF, pH=1.2) and simulated intestinal fluids (SIF, pH=7.4). The results displayed that the cumulative release ratio was up to 80.2% in pH=7.4 for 11 h, only 50.2% in pH=1.2. It means that this hydrogel was suitable for colon-specific drug delivery systems.
Key words:  hydrogel    swelling    sustained release    5-fluorouracil    pH-sensitivity    sodium alginate
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  O63  
基金资助: 湖北省教育厅科学研究计划资助项目(Q20171905)
作者简介:  吴称意:男,1982年生,博士,副教授,主要从事环境友好相关高分子材料研究 E-mail:wcygfz@126.com
引用本文:    
吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
WU Chengyi, LI Cong, ZHANG Xu, CHENG Chao, WU Shaowei, ZHOU Qian, QIN Shanshan. Ultrasound-assisted Synthesis of pH-sensitive Macroporous Sodium Alginate-based Hydrogels and Sustained Release. Materials Reports, 2018, 32(7): 1187-1191.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.021  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1187
1 Wei Q B, Fu F, Zhang Y Q, et al. Synthesis and characterization of pH-responsive carboxymethyl chitosan-g-polyacrylic acid hydrogels[J].Journal of Polymer Research,2015,22:15.
2 Garcia O, Blanco M D, Martin J A, et al. 5-Fluorouracil trapping in poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels: In vitro drug delivery studies[J].European Polymer Journal,2000,36:111.
3 Muzzalupo R, Nicoletta F P, Trombino S, et al. A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation[J].Colloids and Surfaces B:Biointerfaces,2007,58:197.
4 Singh B, Chauhan N. Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems[J].Acta Biomaterialia,2008,4:1244.
5 Hussain M, Beale G, Hughes M, et al. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly(lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer[J].International Journal of Pharmaceutics,2002,234:129.
6 Chang C Y, He M, Zhou J P, et al. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels[J].Macromolecules,2011,44:1642.
7 Artyukhov A A, Shtilman M I, Kuskov A N, et al. Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers[J].Journal of Polymer Research,2011,18:667.
8 Aouada F A, Moura M R D, Orts W J, et al. Preparation and cha-racterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils[J].Journal of Agricultural and Food Chemistry,2011,59:9433.
9 Wang J C, Ying X G, Liu J Q, et al. Controlled mechanical and swelling properties of urethane acrylate grafted calcium alginate hydrogels[J].International Journal of Biological Macromolecules,2015,81:11.
10Wanga L, Shelton R M, Cooper P R, et al.Evaluation of sodium al-ginate for bone marrow cell tissue engineering[J].Biomaterials,2003,24:3475.
11Venkatesan J, Bhatnagar I, Manivasagan P, et al.Alginate compo-sites for bone tissue engineering:A review[J].International Journal of Biological Macromolecules,2015,72:269.
12Jain M, Garg V K, Kadirvelu K.Cadmium(Ⅱ) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads[J].Bioresource Technology,2013,129:242.
13 Polyak B, Geresh S, Marks R S.Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction[J].Biomacromolecules,2004,5:389.
14 Abd El-Ghaffar M A, Hashem, Rabie A M, et al.pH-sensitive so-dium alginate hydrogels for riboflavin controlled release[J].Carbohydrate Polymers,2012,89:667.
15 Hua S, Ma H, Yang H, et al. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium[J].International Journal of Biological Macromolecules,2010,46:517.
16 He B, Gerpen J H V. Application of ultrasonication in transesterification processes for biodiesel production[J].Biofuels,2012,3:479.
17 Chandralekha E, Thangamani A, Valliappan R. Ultrasound-promoted regioselective and stereoselective synthesis of novel spiroindane-dionepyrrolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides[J].Research on Chemical Intermediates,2013,39:961.
18 Anbarasan R, Jayaseharan J, Sudha M, et al. Sonochemical polymerization of acrylic acid and acrylamide in the presence of a new redox system—A comparative study[J].Journal of Applied Polymer Science,2003,89:3685.
19 Lionetto F, Sannino A, Maffezzoli A. Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels[J].Polymer,2005,46:1796.
20Liu A B, Cai H, Ye B, et al. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer[J].Parasitology Research,2013,112:1865.
21Zhang J, Ye B, Kong J, et al. In vitro protoscolicidal effects of high-intensity focused ultrasound enhanced by a superabsorbent polymer[J].Parasitology Research,2013,112:385.
22Jolhe P D, Bhanvase B A, Patil V S, et al. Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor[J].Chemical Engineer Journal,2015,276:91.
23 Samanta H S, Ray S K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide[J].Carbohydrate Polymers,2014,99:666.
24 Kulkarni R V, Sreedhar V, Mutalik S, et al. Interpenetrating network hydrogel membranes of sodium alginate andpoly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin[J].International Journal of Biological Macromolecules,2010,47:520.
25 Mandal S, Basu S K, Sa B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride[J].Carbohydrate Polymers,2010,82:867.
26 Li G Y, Guo L, Chang X J, et al. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs[J].International Journal of Biological Macromolecules,2012,50:899.
27 Wang X H, Zhou Z L, Guo X W, et al. Ultrasonic-assisted synthesis of sodium lignasulfonate-grafted poly(acrylic acid-co-poly(vinyl prrolidone)) hydrogel for drug delivery[J].RSC Advance,2016,6:35550.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[3] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[6] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[7] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[8] 吴强, 商伶俐, 李学锋, 张高文, 黄以万, 龙世军. 多糖聚电解质静电组装高强度水凝胶膜的组织粘接抑菌性[J]. 材料导报, 2024, 38(18): 23030284-6.
[9] 顾春平, 双雨竹, 马俊涛, 周勇, 杨杨, 刘金涛, 金城阳. 水泥基材料自修复颗粒的制备及修复效果事前快速评价方法[J]. 材料导报, 2024, 38(15): 23020205-6.
[10] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[11] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[12] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[13] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[14] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[15] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed