Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22120184-11    https://doi.org/10.11896/cldb.22120184
  高分子与聚合物基复合材料 |
导电高分子水凝胶及其应变传感性能研究进展
王石1, 陈昱恺1, 周新甲1, 呼博渊1, 王勇2, 李瑜1,*, 井新利1,*
1 西安交通大学化学学院,西安 710049
2 江苏宝利金材科技有限公司,江苏 镇江 212000
Research Progress in Conducting Polymer Hydrogels and Their Strain Sensing Properties
WANG Shi1, CHEN Yukai1, ZHOU Xinjia1, HU Boyuan1, WANG Yong2, LI Yu1,*, JING Xinli1,*
1 School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
2 Jiangsu Polymet Technology Co., Ltd., Zhenjiang 212000, Jiangsu, China
下载:  全 文 ( PDF ) ( 18809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电高分子水凝胶特指以本征型导电高分子聚苯胺、聚吡咯或聚噻吩等作为导电组分的一类水凝胶。水凝胶的介质环境有助于导电高分子保持质子酸掺杂状态,导电高分子的有机骨架又易与水凝胶网络结合,因此含有导电高分子的水凝胶具有丰富的可设计性,在应变传感领域表现出可观的应用前景,是一种极具潜力的柔性电子材料。本文结合导电高分子水凝胶最新研究进展,系统归纳了亲水性高分子网络与刚性的导电高分子复合形成三维交联网络的构建策略,指出了提升该类材料力学性能、导电性能和抗冻性能的关键制备方法,并分析了其应变传感性能的影响因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王石
陈昱恺
周新甲
呼博渊
王勇
李瑜
井新利
关键词:  导电高分子  水凝胶  应变传感  力学性能    
Abstract: Conducting polymer hydrogels (CPH) here refer to hydrogels contain polyaniline, polypyrrole or polythiophene as conducting components in their matrix. The water rich environment of hydrogels is beneficial for maintaining the protonic acid doped state of conducting polymers, whereas the conducting polymers with organic backbone are more appropriate to be incorporated into hydrogel matrix in compassion with other conducting fillers. Conducting polymer hydrogels thus exhibit highly tunable properties especially interesting strain sensing behaviour, and become a highly concerned material for flexible electronics at present. This review focused on the construction strategies to CPH and summarized the methods to combine the hydrophilic polymer networks with rigid conducting polymers. The key issues to improve the mechanical, conducting, and anti-freezing properties of CPH were analyzed, and the strain sensing behavior of recently reported CPH were also evaluated.
Key words:  conducting polymers    hydrogel    strain sensing    mechanical property
发布日期:  2024-06-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51903200);陕西省高等教育学会高等教育科学研究项目(XGH21030);广东省科技计划项目(2019B090905007)
通讯作者:  *李瑜,西安交通大学化学学院副教授、博士研究生导师。2012年西安交通大学化学工程与技术专业博士毕业,2014年起在西安交通大学工作至今。目前主要从事导电高分子水凝胶、动态交联可再生高分子和功能涂层等方面的研究工作。发表论文30余篇,包括Macromolecules、Polymer、Journal Materials Chemistry A、Journal Materials Che-mistry C等。yuli2012@mail.xjtu.edu.cn;xljing@mail.xjtu.edu.cn   
作者简介:  王石,2021年6月于西南石油大学获得工学学士学位。现为西安交通大学化学学院硕士研究生,在李瑜副教授的指导下进行课题研究,目前主要研究领域为导电聚吡咯水凝胶及其应变传感性能。
井新利,通信作者,西安交通大学化学学院教授、博士研究生导师。1991年起在西安交通大学工作至今,目前主要从事功能高分子、动态交联可再生高分子、耐烧蚀树脂等方面的研究工作。发表论文100余篇,包括Journal of American Chemical Society、Macromolecules、Chemical Engineering Journal、Journal Materials Chemistry A等。
引用本文:    
王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
WANG Shi, CHEN Yukai, ZHOU Xinjia, HU Boyuan, WANG Yong, LI Yu, JING Xinli. Research Progress in Conducting Polymer Hydrogels and Their Strain Sensing Properties. Materials Reports, 2024, 38(11): 22120184-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120184  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22120184
1 Liu K Q, Wei S, Song L X, et al. Journal of Agricultural and Food Chemistry, 2020, 68(28), 7269.
2 Yue M C, Wang Y F, Guo H L, et al. Composites Science and Technology, 2022, 220, 109263.
3 Xie H P, Yu Q J, Mao J, et al. Journal of Materials Science-Materials in Electronics, 2020, 31(13), 10381.
4 Chen X L, Hao W Z, Lu T, et al. Macromolecular Chemistry and Phy-sics, 2021, 222(24), 2100165.
5 He S J, Cheng Q Y, Liu Y H, et al. Science China-Materials, 2022, 65(7), 1980.
6 Wang Z W, Zhou H W, Lai J L, et al. Journal of Materials Chemistry C, 2018, 6(34), 9200.
7 Wu Y B, Chen Y X, Yan J H, et al. Journal of Materials Chemistry B, 2015, 3(26), 5352.
8 Fang Y L, Xu J H, Gao F, et al. Composites Part B-Engineering, 2021, 219, 108965.
9 Stejskal J, Bober P, Trchova M, et al. Macromolecules, 2017, 50(3), 972.
10 Hu C X, Zhang Y L, Wang X D, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 44000.
11 Wang T Y, Zhang Q, Liu W, Cheng, et al. Advanced Functional Materials, 2018, 28(7), 1705551.
12 Wang Z W, Chen J, Gong Y, et al. Chemistry of Materials, 2018, 30(21), 8062.
13 Sun, X Y, Wang H X, Ding Y, et al. Journal of Materials Chemistry B, 2022, 10(9), 1442.
14 Xia S, Song S X, Gao G H. Chemical Engineering Journal, 2018, 354, 817.
15 Wang J, Lin Y K, Mohamed A, et al. Journal of Materials Chemistry C, 2021, 9(2), 575.
16 Zhou H W, Wang Z W, Zhao W F, et al. Chemical Engineering Journal, 2021, 403, 126307.
17 Jin X Q, Jiang H H, Li G Q, et al. Chemical Engineering Journal, 2020, 394, 124901.
18 Tie J F, Chai H B, Mao Z P, et al. Carbohydrate Polymers, 2021, 273, 118600.
19 Zhang W, Wen J Y, Ma M G, et al. Journal of Materials Research and Technology-Jmr&T, 2021, 14, 555.
20 Abodurexiti A, Maimaitiyiming X. IEEE Sens J, 2022, 22(13), 12588.
21 Ren K, Cheng Y, Huang C, et al. Journal of Materials Chemistry B, 2019, 7(37), 5704.
22 Wang C, Zhang J, Xu H, et al. Carbohydrate Polymers, 2022, 295, 119890.
23 Li Y Q, Liu X H, Gong Q, et al. International Journal of Biological Macromolecules, 2021, 172, 41.
24 Shen Z, Zhang Z, Zhang N, et al. Advanced Materials, 2022, 34(32), 2203650.
25 Zhang D, Tang Y, Zhang Y, et al. Journal of Materials Chemistry A, 2020, 8(39), 20474.
26 Peng X W, Wang W D, Yang W S, et al. Journal of Colloid and Interface Science, 2022, 618, 111.
27 Peng Y J, Pi M H, Zhang X L, et al. Polymer, 2020, 196, 122496.
28 Zhang H, Yue M, Wang T, et al. New Journal of Chemistry, 2021, 45(10), 4647.
29 Liang J, He J, Xin Y, et al. Macromolecular Materials and Engineering, DOI:10. 1002/mame. 202200519.
30 Stejskal J. Chemical Papers, 2017, 71(2), 269.
31 Wang Z W, Zhou H W, Chen W X, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 14045.
32 Martinez M V, Abel S B, Rivero R, et al. Polymer, 2015, 78, 94.
33 Chen L Z, Zhang W Y, Dong Y F, et al. Macromolecular Materials and Engineering, 2020, 305(3), 1900737.
34 Guo B L, Ma P X. Biomacromolecules, 2018, 19(6), 1764.
35 Wang J, Li Q, Li K C, et al. Advanced Materials, 2022, 34(12), 2109904.
36 Li Y, Bober P, Trchova M, et al. Journal of Materials Chemistry C, 2017, 5(17), 4236.
37 Li Y, Wang Y P, Bian C, et al. Dyes and Pigments, 2020, 177, 108329.
38 Li S B, Liu J Y, Zhang X Y, et al. Polymer Bulletin, 2015, 72(11), 2891.
39 Wang Y Q, Shi Y, Pan L J, et al. Nano Letters, 2015, 15(11), 7736.
40 Li Y, Wang Y, Liu X, et al. Chemical Papers, 2021, 75(10), 5113.
41 Wei D L, Lin X, Li L, et al. Soft Matter, 2013, 9(10), 2832.
42 Yang C Y, Yin J L, Chen Z, et al. Macromolecular Materials and Engineering, 2020, 305(12), 2000479.
43 Stejskal J. Chemical Papers, 2020, 74(1), 1.
44 Han Y Y, Sun L, Wen C Y, et al. Biomedical Materials, 2022, 17(2), 024107.
45 Hu S Q, Zhou L, Tu L J, et al. Journal of Materials Chemistry B, 2019, 7(15), 2389.
46 Han L, Yan L W, Wang M H, et al. Chemistry of Materials, 2018, 30(16), 5561.
47 Darabi M A, Khosrozadeh A, Mbeleck R, et al. Advanced Materials, 2017, 29(31), 1700533.
48 Sun F C, Huang X Y, Wang X, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 625, 126897.
49 Zhang D, Tang Y J, Zhang Y X, et al. Journal of Materials Chemistry A, 2020, 8(39), 20474.
50 Zhang Y F, Guo M M, Zhang Y, et al. Polymer Testing, 2020, 81, 106213.
51 An Y, Iwashita K, Okuzaki H. Multifunctional Materials, 2018, 2(1), 014001.
52 Peng X, Wang W, Yang W, et al. Journal of Colloid and Interface Science, 2022, 618, 111.
53 An Y J, Iwashita K, Okuzaki H. Multifunctional Materials, 2019, 2(1), 014001.
54 Suneetha M, Moo O S, Choi S M, et al. Chemical Engineering Journal, 2021, 426, 130847.
55 Yao B, Wang H, Zhou Q, et al. Advanced Materials, 2017, 29(28), 1700974.
56 Feig V R, Tran H, Lee M, et al. Nature Communications, 2018, 9, 2740.
57 Lu B, Yuk H, Lin S, et al. Nature Communications, 2019, 10, 1043.
58 Chen X L, He M M, Zhang X H, et al. Macromolecular Chemistry and Physics, 2020, 221(10), 2000054.
59 Qin H L, Chen Y J, Huang J Y, et al. Macromolecular Materials and Engineering, 2021, 306(8), 2100159.
60 Chen Y Y, Lu K Y, Song Y H, et al. Nanomaterials, 2019, 9(12), 1737.
61 Jiao Y, Lu Y, Lu K Y, et al. Journal of Colloid and Interface Science, 2021, 597, 171.
62 Deng Z, Lin B, Wang W, et al. International Journal of Biological Macromolecules, 2021, 191, 627.
63 Duan J J, Liang X C, Guo J H, et al. Advanced Materials, 2016, 28(36), 8037.
64 Gu Z D, Xu Y C, Chen L, et al. Macroporous Macromolecular Materials and Engineering, 2018, 303(10), 1800339.
65 Kasparkova V, Humpolicek P, Stejskal J, et al. Polymers for Advanced Technologies, 2016, 27(2), 156.
66 Shi Y, Pan L J, Liu B R, et al. Journal of Materials Chemistry A, 2014, 2(17), 6086.
67 Li G, Huang K X, Deng J, et al. Advanced Materials, 2022, 34(15), 2200261.
68 Cheng T, Wang F, Zhang Y Z, et al. Chemical Engineering Journal, 2022, 450, 138311.
69 Won D, Kim J, Choi J, et al. Science Advances, 2022, 8(23), eabo3209.
70 Ren X N, Yang M, Yang T T, et al. ACS Applied Materials & Interfaces, 2021, 13(21), 25374.
71 Li G, Li C L, Li G D, et al. Small, 2022, 18(5), 2101518.
72 Sun X Y, Wang H X, Ding Y, et al. Journal of Materials Chemistry B, 2022, 10(9), 1442.
73 Zhao T, Wang G, Hao D, et al. Advanced Functional Materials, 2018, 28(49), 1800793.
74 Chen F, Zhou D, Wang J, et al. Angewandte Chemie-International Edition, 2018, 57(22), 6568.
75 Peng Y J, Yan B, Li Y S, et al. Journal of Materials Science, 2020, 55(3), 1280.
76 Cao L L, Zhao Z J, Wang X Y, et al. Advanced Materials Technologies, 2022. 7(7), 2101382.
77 Zhang D, Liu Y L, Liu Y H, et al. Advanced Materials, 2021, 33(42), 2104006.
78 Di X, Ma Q, Xu Y, et al. Materials Chemistry Frontiers, 2021, 5(1), 315, 2200261
79 Chen W, Bu Y, Li D, et al. Journal of Materials Chemistry C, 2020, 8(3), 900.
80 Zhang W, Wen J Y, Ma M G, et al. Journal of Materials Research and Technology, 2021, 14, 555
81 Xia S, Song S X, Gao G H. Chemical Engineering Journal, 2018, 354, 817.
82 Li Y, Liu X, Gong Q, et al. International Journal of Biological Macromolecules, 2021, 172, 41.
83 Zhang C, Wang M, Jiang C, et al. Nano Energy, 2022, 95, 106991.
84 Rahmani P, Shojaei A.Advances in Colloid and Interface Science, 2021, 298, 102553.
85 Hu Z R, Li J, Wei X T, et al. ACS Applied Materials & Interfaces, 2022, 14, 45853.
86 Yu X H, Zhang H P, Wang Y F, et al. Advanced Functional Materials, 2022, 32(33), 2204366.
87 Feng E K, Li J J, Zheng G C, et al. Chemical Engineering Journal, 2022, 432, 134406.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed