Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22120199-8    https://doi.org/10.11896/cldb.22120199
  高分子与聚合物基复合材料 |
活性改性剂合成及其对环氧胶黏剂力学与界面粘接性能的影响
元强1,2, 王攒1,2, 姚灏1,2,*, 黄炬1,2, 左胜浩1,2, 黄海2,3
1 中南大学土木工程学院,长沙 410075
2 高速铁路建造技术国家工程研究中心,长沙 410075
3 中铁四局安徽中铁工程材料科技有限公司,合肥 230041
Synthesis of Reactive Modifiers and Their Effects on the Mechanical and Interfacial Bonding Properties of Epoxy Adhesives
YUAN Qiang1,2, WANG Zan1,2, YAO Hao1,2,*, HUANG Ju1,2, ZUO Shenghao1,2, HUANG Hai2,3
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 National Engineering Research Center of High-speed Railway Construction Technology, Changsha 410075, China
3 Anhui Engineering Material Technology Co., Ltd., of CTCE Group, Hefei 230041, China
下载:  全 文 ( PDF ) ( 11869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 综合考虑环氧胶黏剂的施工性能、力学性能及与砂浆界面的粘接性能,利用三羟甲基丙烷三缩水甘油醚(TMPGE)与1,4-丁二醇(BDO),通过控制反应物物质的量比以及反应时间制备了四种低环氧值兼具高羟基含量的预聚体(PPM)。通过1H-NMR、盐酸-丙酮法及凝胶渗透色谱(GPC)对PPM进行了表征。进一步研究了PPM对改性环氧胶黏剂工作性能、固化力学性能、与水泥砂浆粘接强度以及表面性质的影响。结果显示:延长反应时间以及增加BDO用量使PPM的数均分子量更大、环氧值更低。四种PPM改性后,胶黏剂的放热峰值温度降低,可操作时间延长。同时,PPM使环氧固化物的延性显著增加。四种PPM改性后使环氧与水的接触角降低,固化物表面的极性组分升高。XPS分析表明,PPM使环氧固化物的羟基含量显著提高。最后,PPM使胶黏剂对湿砂浆基体的粘接强度提高了一倍以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
元强
王攒
姚灏
黄炬
左胜浩
黄海
关键词:  环氧胶黏剂  可操作时间  裂缝修补  灌浆料  界面粘接    
Abstract: Considering the workability, mechanical and bonding properties of epoxy adhesives, four prepolymers (PPM) with low epoxy value and high hydroxyl content were prepared using trimethylolpropane triglycidyl ether (TMPGE) and 1, 4-butanediol (BDO) by tuning the molar ratio and reaction time. The PPM was characterized by1H-NMR, hydrochloric acid-acetone method, and gel permeation chromatography (GPC). The effect of PPM on the workability, mechanical, bonding properties and the surface properties of the modified epoxy adhesives was further investigated. The results showed that prolonging the reaction time and increasing the BDO amount resulted in larger molecular weight and lower epoxy value of the products. After PPM modification, the exothermic temperature of the adhesives was reduced, the operability time was increased, and the ductility of the cured epoxy was significantly increased. PPM modification also resulted in a lower contact angle and a higher polar component of the cured epoxy surface. XPS analysis showed that the PPM significantly increased the hydroxyl content of the cured epoxy. The bond strength of the adhesive to the wet mortar matrix increases more than double by PPM addition.
Key words:  epoxy adhesives    operability time    crack repair    grouting material    interface bonding
发布日期:  2024-06-25
ZTFLH:  TU58+1.3  
基金资助: 中国中铁股份有限公司科技研究开发计划项目(重大专项课题2020-专项-02);高速铁路建造技术国家工程实验室开放基金(HSR202013)
通讯作者:  *姚灏,中南大学土木工程学院副教授、硕士研究生导师。2018年博士毕业于西北工业大学。主要从事工程维修与防护技术、混凝土化学外加剂、有机-无机复合材料等领域的研究工作。主持国家自然科学基金青年项目、国家重点研究计划子课题等8项,以第一或通信作者发表论文30余篇。yaohao@csu.edu.cn   
作者简介:  元强,中南大学土木工程学院教授、博士研究生导师。国家自然科学基金委优秀青年基金、中国硅酸盐学会青年科技奖获得者。主持国家级、省部级、企业课题60余项,长期围绕高速铁路建造与养维关键水泥基材料、3D打印水泥基材料、新型结构材料、绿色低碳材料等领域开展研究,发表论文150余篇,出版英文专著/教材3部、中文专著/教材4部,应邀编写英文专著1章,申请/授权发明专利20余项。
引用本文:    
元强, 王攒, 姚灏, 黄炬, 左胜浩, 黄海. 活性改性剂合成及其对环氧胶黏剂力学与界面粘接性能的影响[J]. 材料导报, 2024, 38(11): 22120199-8.
YUAN Qiang, WANG Zan, YAO Hao, HUANG Ju, ZUO Shenghao, HUANG Hai. Synthesis of Reactive Modifiers and Their Effects on the Mechanical and Interfacial Bonding Properties of Epoxy Adhesives. Materials Reports, 2024, 38(11): 22120199-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120199  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22120199
1 Tatar J, Torrence C E, Mecholsky J J, et al. International Journal of Adhesion and Adhesives, 2018, 84, 132.
2 Daneshvar D, Deix K, Robisson A. Construction and Building Materials, 2021, 307, 124328.
3 Modesti L A, de Vargas A S, Schneider E L. International Journal of Adhesion and Adhesives, 2020, 101, 102645.
4 Zheng Y, Wang S Z, Yang J, et al. Materials Reports, 2016, 30(20), 109 (in Chinese).
郑寅, 王苏展, 杨瑾, 等. 材料导报, 2016, 30(20), 109.
5 Chen Z H, Ruan Y B, Yang J. Polymer Materials Science & Enginee-ring, 2022, 38(7), 69 (in Chinese).
陈子豪, 阮英波, 杨杰. 高分子材料科学与工程, 2022, 38(7), 69.
6 Sahu M, Raichur A M. Composites Part B:Engineering, 2019, 168, 15.
7 Yang J Y, He X W, Wang H X, et al. Journal of Applied Polymer Science, 2019, 137(17), 48596.
8 Liu X, Chen D, He H Y, et al. Acta Materiae Compositae Sinica, 2020, 37(8), 1904 (in Chinese).
刘新, 陈铎, 何辉永, 等. 复合材料学报, 2020, 37(8), 1904.
9 Sprenger S. Nanosilica-Toughened Epoxy Resins. Polymers, 2020, 12(8), 1777.
10 Jayan J S, Saritha A, Joseph K. Polymer Composites, 2018, 39(S4), E1959.
11 Ying W B, Yang H S, Moon D S, et al. Journal of Applied Polymer Science, 2018, 135(5), 45790.
12 Wei B, Zhou J T, Yao Z J, et al. Materials Reports, 2019, 33(17), 2976 (in Chinese).
魏波, 周金堂, 姚正军, 等. 材料导报, 2019, 33(17), 2976.
13 Cheng X, Wang H B, Du Z L. Advanced Engineering Sciences, 2016, 48(2), 213 (in Chinese).
成煦, 王海波, 杜宗良. 四川大学学报(工程科学版), 2016, 48(2), 213.
14 Dai X Y, Li P H, Sui Y L, et al. Journal of Polymer Science, 2021, 59(7), 627.
15 Huang Y Z, Tian Y Z, Li Y Y, et al. RSC Advances, 2017, 7(77), 49074.
16 Qin Y S, Chen K P, Zhang H, et al. Solar Energy Materials and Solar Cells, 2019, 203, 110192.
17 Tian N, Ning R C, Kong J. Polymer, 2016, 99, 376.
18 Yao H S, Liu W Q, Hou M H, et al. Polymer Materials Science & Engineering, 2006(2), 133 (in Chinese).
姚海松, 刘伟区, 侯孟华, 等. 高分子材料科学与工程, 2006(2), 133.
19 Yang S, Sun S Y, Zhu H X, et al. Paint & Coatings Industry, 2021, 51(6), 36 (in Chinese).
杨苏, 孙尚艳, 祝晗旭, 等. 涂料工业, 2021, 51(6), 36.
20 Xu W K, Wang H L, Dong Y Z, et al. China Plastics, 2021, 35(1), 110 (in Chinese).
许伟坤, 王慧丽, 董亿政, 等. 中国塑料, 2021, 35(1), 110.
21 Pan Z Q, Zhang Z, Mo Y T, et al. Polymer Bulletin, DOI:10. 1007/s00289-022-04244-9.
22 Chen H, Ling M, Hencz L, et al. Chemical Reviews, 2018, 118(18), 8936.
23 Lei Z H, Jiang K, Chen Y Z, et al. International Journal of Adhesion and Adhesives, 2022. 117, 103167.
24 Luo C, Wu X F, Zhang T, et al. Macromolecular Materials and Engineering, 2020, 306(1), 2000525.
25 Zhang L R, Miao X, Kong X M, et al. Cement and Concrete Composites, 2019, 104, 103369.
26 Ahmad S, Gupta A P, Sharmin E, et al. Progress in Organic Coatings, 2005, 54(3), 248.
27 Atta A M, Shaker N O, Abdou M I, et al. Progress in Organic Coatings, 2006, 56(2-3), 91.
28 He Z P, Wang Y, Zhao T T, et al. Analytical Methods, 2014, 6(12), 4257.
29 Voit B I, Lederer A. Chemical Reviews, 2009, 109(11), 5924.
30 Xu M, Yan X H, Cheng R S, et al. Polymer International, 2001, 50(12), 1338.
31 Xing A. Hyperbranched and tetrafunctional phenols/epoxies:synthesis and properties. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2020 (in Chinese).
兴安, 超支化及四官能度酚/环氧的合成与性能研究. 博士学位论文, 北京化工大学, 2020.
32 Ozgul E O, Ozkul M H. Construction and Building Materials, 2018, 158, 369.
33 Cui C Y, Fan C C, Wu Y H, et al. Advanced Materials, 2019, 31(49), 1905761.
34 Gao Y, Guo R F, Fan R J, et al. Pest Management Science, 2018, 74(8), 1804.
35 Fang Z H, Tu Q Z, Shen X M, et al. Surfaces and Interfaces, 2022, 29, 101728.
36 Zhang W, Zheng Q F, Ashour A, et al. Composites Part B:Engineering, 2020, 189, 107892.
37 Wang L, Zhou S H, Shi Y, et al. Composites Part B:Engineering, 2017, 130, 28.
[1] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed