Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22120217-5    https://doi.org/10.11896/cldb.22120217
  金属与金属基复合材料 |
热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响
王虎1, 武少杰1,2, 董翼纶1, 程方杰1,2,*
1 天津大学材料科学与工程学院,天津 300350
2 天津市现代连接技术重点实验室,天津 300350
Effect of Heat Input on Microstructure and Impact Toughness of Thick-walled Component by Submerged Arc Additive Manufacturing
WANG Hu1, WU Shaojie1,2, DONG Yilun1, CHENG Fangjie1,2,*
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 29681KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用埋弧增材工艺,利用不同热输入制备了大壁厚试验件,分析了热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响,为核电、海洋平台等领域利用增材制造技术制备大型构件提供了理论基础。结果表明:低热输入下所有沉积金属都经过了完全的内生性热处理,组织上呈现为均匀细小的等轴晶形态,-60 ℃夏比冲击吸收功均值约为280 J,最低值也在200 J以上,低温冲击韧性优异;高热输入下沉积金属没有经过完全的内生性热处理,组织中出现了未完全重结晶带,残留了少量原始沉积态的粗大柱状组织,-60 ℃夏比冲击吸收功均值约为100 J,最低值只有9 J,分散度很大,冲击韧性不稳定。冲击吸收功的大小与试样缺口附近的微观组织形态有关:当缺口恰好开在完全重结晶区时,冲击功很高,形成典型的韧性断口;当缺口开在未完全重结晶带上时,冲击功很低,表现为脆性断口。要保证优异的低温冲击韧性,埋弧增材需要合适的热输入,因为过高的热输入会导致层间出现未完全重结晶组织,这是恶化其低温韧性的根源所在。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王虎
武少杰
董翼纶
程方杰
关键词:  埋弧增材  内生性热处理  显微组织  冲击韧性  断裂性能    
Abstract: In this study, the submerged arc additive manufacturing was used to fabricate large thick-walled test parts under different heat inputs, and the influence of heat input on the microstructure and impact toughness was analysed, which provided a theoretical basis for the fabrication of large components in nuclear power, offshore platforms and other fields using the additive manufacturing technology. The results showed that all the deposited metals undergo completely intrinsic heat treatment under low heat input, and the microstructure presented a uniform fine equiaxed crystal morphology. The mean value of Charpy impact energy at -60 ℃ was about 280 J, and the lowest value was more than 200 J. The low temperature impact toughness was excellent. Under high heat inputs, the metals of thas-deposited component failed to undergo completely intrinsic heat treatment, incomplete recrystallization zone appeared in the structure, and a small amount of coarse columnar structures of the original sedimentary state was remained. At -60 ℃, the mean value of Charpy impact energy was below to 100 J, and the lowest value was only 9 J. The dispersion of the value of Charpy impact energy under high heat inputs was large and the impact toughness was unstable. The value of impact energy was related to the microstructure near the notch of the sample. When the notch was just opened in the complete recrystallization zone, the value of the impact energy was very high, forming a typical ductile fracture. When the notch was opened in the incomplete recrystallization zone, the impact energy is very low, as a brittle fracture. In order to ensure excellent low temperature impact toughness, submerged arc additive manufacturing needed appropriate heat input, and too high heat input leaded to incomplete recrystallization between layers, which was the root cause of deterioration of its low temperature toughness.
Key words:  submerged arc additive manufacturing    intrinsic heat treatment    microscopic structure    impact toughness    fracture property
发布日期:  2024-06-25
ZTFLH:  TG142.3  
基金资助: 国家自然科学基金(52005366);天津市自然科学基金(21JCQNJC00570)
通讯作者:  *程方杰,工学博士,天津大学教授、博士研究生导师。1992年9月—1999年6月本硕就读于西安交通大学,1999年9月—2002年6月博士就读于天津大学。2004年4月到天津大学材料科学与工程学院工作至今。主要研究方向为先进焊接制造工艺和高效电弧增材技术。发表学术论文80余篇,授权专利10余项。chfj@tju.edu.cn   
作者简介:  王虎,2021年6月于燕山大学获得工学学士学位。现为天津大学材料科学与工程学院硕士研究生,主要研究领域为金属材料的电弧增材制造。
引用本文:    
王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
WANG Hu, WU Shaojie, DONG Yilun, CHENG Fangjie. Effect of Heat Input on Microstructure and Impact Toughness of Thick-walled Component by Submerged Arc Additive Manufacturing. Materials Reports, 2024, 38(11): 22120217-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120217  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22120217
1 Chen L, He Y, Yang Y, et al. The International Journal of Advanced Manufacturing Technology, 2017, 89(9), 3651.
2 Williams S W, Martina F, Addison A C, et al. Materials Science and Technology, 2016 (32), 641.
3 Guo L X, Li X P, Chen Y, et al. Hot Working Technology, 2023(5), 7(in Chinese).
郭立祥, 李小平, 陈阳, 等. 热加工工艺, 2023(5), 7.
4 Li Y, Wu S, Li H, et al. Additive Manufacturing, 2021, 46, 102124.
5 Boyer H E, Gall T L. Metals handbook; desk edition, United States, 1985.
6 Dou G S, Cao R, Jiang Y, et al. Materials Reports, 2022, 36(S2), 342(in Chinese).
窦贵山, 曹睿, 蒋勇, 等. 材料导报, 2022, 36(S2), 342.
7 Kussmaul K, Schoch F W, Luckow H. Welding Journal, 1983, 62(9), 17.
8 Li Y, Wu S, Li H, et al. Materials Letters, 2021, 283, 128780.
9 Dong Y L, Li Y H, Wu S J, et al. Transactions of Materials and Heat Treatment, 2022, 43(2), 87(in Chinese).
董翼纶, 李宇航, 武少杰, 等. 材料热处理学报, 2022, 43(2), 87.
10 Choi B C, Kim B, Kim B J, et al. Metals, 2021, 11(11), 1839.
11 Timofeev B T, Blumin A A, Anikovsky V V. International Journal of Pressure Vessels and Piping, 1998, 75(13), 945.
12 Eroğlu M, Aksoy M, Orhan N. Materials Science and Engineering:A, 1999, 269(1), 59.
13 Wang X B, Zhang Y B, Xie C S, et al. Heat Treatment of Metals, 2019, 44(4), 141(in Chinese).
王小彬, 张亚斌, 谢常胜, 等. 金属热处理, 2019, 44(4), 141.
14 Morris Jr J W. Science, 2008, 320(5879), 1022.
15 Li Y, Wu S, Lv X, et al. Journal of Manufacturing Processes, 2021, 71, 356.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[3] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[6] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[7] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[8] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[9] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[10] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[11] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[12] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[13] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[14] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[15] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed