Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040270-5    https://doi.org/10.11896/cldb.22040270
  金属与金属基复合材料 |
高碳铬不锈钢电子束焊接头性能研究
代一博1,2, 罗兵兵1,*, 房卫萍1, 易耀勇1, 胡永俊2, 易朋1,2
1 广东省科学院中乌焊接研究所,广东省现代焊接技术重点实验室,广州 510650
2 广东工业大学材料与能源学院,广州 510006
Study on the Properties of Electron Beam Welded Joints of High Carbon Chromium Stainless Steel
DAI Yibo1,2, LUO Bingbing1,*, FANG Weiping1, YI Yaoyong1, HU Yongjun2, YI Peng1,2
1 Guangdong Provincial Key Laboratory of Advanced Welding Technology, China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China
2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 27739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对高碳铬不锈钢焊接接头性能差的问题,采用电子束焊接技术对厚度为5 mm的调质态的高碳铬不锈钢进行焊接。利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉伸试验机等设备对其接头进行显微组织与性能分析。结果表明,在加速电压150 kV、束流强度17 mA、焊接速度850 mm/min的条件下,可获得成形良好、无气孔和裂纹等缺陷产生的焊接接头。碳及合金元素以固溶态形式存在于焊缝中,熔合区均为马氏体和残余奥氏体,呈现出非平衡凝固组织,焊接热影响区中碳化物颗粒发生部分溶解。焊接接头硬度分布呈现典型的“M”型,焊接热影响区硬度最高,可达750HV;焊接接头抗拉强度为699 MPa,在焊接热影响区发生脆性断裂,接头的塑性变形能力急剧下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代一博
罗兵兵
房卫萍
易耀勇
胡永俊
易朋
关键词:  高碳铬不锈钢  电子束焊  显微组织  接头性能    
Abstract: In view of the problem of poor performance of welded joints of high carbon chromium stainless steel, electron beam welding technology was used to weld high carbon chromium stainless steel with a thickness of 5 mm in a quenched and tempered state. The microstructure and pro-perties of the joints were analyzed by optical microscope (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and tensile testing machine. The results show that under the conditions of accelerating voltage of 150 kV, beam intensity of 17 mA, and welding speed of 850 mm/min, joints with good formation and no defects such as pores and cracks can be obtained. Carbon and alloying elements exist in the weld in the form of solid solution, the fusion zone is martensite and residual austenite, showing a non-equilibrium solidification structure, and the carbide particles in the welding heat-affected zone are partially dissolved. The hardness distribution of the welded joint presents a typical ‘M’ type, and the hardness of the welded heat-affected zone is the highest, which can reach 750HV; the tensile strength of the welded joint is 699 MPa, and brittle fracture occurs in the welded heat-affected zone, and the plastic deformation capacity of the joint decreases sharply.
Key words:  high carbon chromium stainless steel    electron beam welding    microstructure    joint property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG456.3  
基金资助: 广州市对外科技合作项目(201907010010);广东省重点领域研发计划项目(2018B090904004);国家重点研发计划项目(2020YFE0205300)
通讯作者:  *罗兵兵,2016年南昌航空大学航空制造工程学院焊接技术与工程专业本科毕业,2019年南昌大学机电工程学院材料加工工程专业硕士毕业后到广东省科学院中乌焊接研究所工作至今。现任广东省科学院中乌焊接研究所工程师,目前主要从事高能束流焊接技术和接头性能分析的研究工作,发表SCI/EI等相关论文7篇,包括《材料导报》、Intermetallics、Materials等。lbingbing11@126.com   
作者简介:  代一博,2019年获得沈阳大学工学学士学位。现为广东工业大学材料与能源学院和广东省科学院中乌焊接研究所硕士研究生。目前主要研究领域为高能束焊接技术及接头性能分析。
引用本文:    
代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
DAI Yibo, LUO Bingbing, FANG Weiping, YI Yaoyong, HU Yongjun, YI Peng. Study on the Properties of Electron Beam Welded Joints of High Carbon Chromium Stainless Steel. Materials Reports, 2023, 37(17): 22040270-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040270  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040270
1 Zhang C L, Zhu Y C, Jiang B. Materials Reports, 2023, 37(6), 21090266 (in Chinese).
张朝磊, 朱禹承, 蒋波. 材料导报, 2023, 37(6), 21090266.
2 Pan L, Kwok C T, Lo K H. Journal of Materials Processing Technology, 2020, 277, 1.
3 Shen W J, Nan B, Wang W L, et al. Journal of Alloys and Compounds, 2018, 738, 363.
4 Köse C, Kaçar R. Materials and Design, 2014, 64, 221.
5 Srivatsa K, Srinivas P, Balachandran G, et al. Materials Science & Engineering A, 2016, 677, 240.
6 Shao R N, He T T, Liu J, et al. Materials Reports, 2021, 35(20), 20062 (in Chinese).
邵若男, 贺甜甜, 刘建, 等. 材料导报, 2021, 35(20), 20062.
7 Zhao Y G, Liu W, Fan Y M, et al. Materials Characterization, 2021, 175, 111066.
8 Li S H, Yuan X H, Jiang W, et al. Materials Science & Engineering A, 2014, 605, 229.
9 Villaret F, Boulnat X, Aubry P, et al. Materials Science & Engineering A, 2021, 824, 141794.
10 Yang S B, Wang Y, Shen D, et al. Materials Reports, 2014, 28(17), 60 (in Chinese).
杨绍斌, 王阳, 沈丁, 等. 材料导报, 2014, 28(17), 60.
11 He Z G, Zou Y, Xing L, et al. Welding & Joining, 2019(4), 29 (in Chinese).
何志高, 邹旸, 邢丽, 等. 焊接, 2019(4), 29.
12 Dinda S K, Sk M B, Roy G G, et al. Materials Science & Engineering A, 2016, 677, 182.
13 Zhang Z Y, Wang S L, Ke L M, et al. Rare Metal Materials and Engineering, 2018, 47(7), 2246 (in Chinese).
张子阳, 王善林, 柯黎明, 等. 稀有金属材料与工程, 2018, 47(7), 2246.
14 Jalaja K, Manwatkar S K, Anand P, et al. Engineering Failure Analysis, 2021, 124, 105376.
15 Yi P. Numerical simulation and experimental study on weld morphology of electron beam welding of high carbon and high chromium stainless steel. Master’s Thesis, Guangdong University of Technology, China, 2021 (in Chinese).
易朋. 高碳高铬不锈钢电子束焊接焊缝形状数值模拟与试验研究. 硕士学位论文, 广东工业大学, 2021.
16 Peng H L, Hu B, Li B J, et al. Materials Science and Engineering A, 2020, 772, 138803.
[1] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[2] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[3] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[4] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[5] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[6] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 张兵宪, 杜明科, 雷龙宇, 张敏, 张志强. 补焊工艺对30CrMnSiA接头微观组织及性能的影响研究[J]. 材料导报, 2023, 37(16): 22020034-5.
[9] 常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
[10] 孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
[11] 赵吉康, 肖平安, 顾景洪, 钟斯远. TiCNp增强高铬铸铁复合材料的制备与性能[J]. 材料导报, 2023, 37(13): 21110021-5.
[12] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[13] 张帆, 薛松柏, 王博, 黄智恒, 龙伟民. 钕对ER5183铝合金焊丝及接头性能与组织的影响研究[J]. 材料导报, 2023, 37(11): 21080188-5.
[14] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[15] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed